中文    English

Journal of library and information science in agriculture

   

A Study of the Factors Influencing Participation Behavior among Users with Depression on User-Generated Content (UGC) Platforms

ZHAO Yajing   

  1. Department of Business and Trade, Southwest University, Chongqing 400000
  • Received:2025-06-05 Online:2025-08-26

Abstract:

[Purpose/Significance] This study focuses on the participation behavior of users prone to depression who participate in user-generated content (UGC) platforms, aiming to explore their behavioral heterogeneity and the underlying influencing mechanisms. The research aims to expand the theoretical scope of studies on user behavior while providing UGC platforms with practical guidance on building differentiated user care models and refining operational strategies. By utilizing authentic user-generated content as the data foundation, this study addresses the representational limitations commonly associated with traditional small-sample approaches, such as surveys and interviews. It introduces a data-driven perspective and methodological innovation to the field of information behavior research. Furthermore, this study enhances the understanding of varying psychological and behavioral needs among different types of depression-prone users. The findings can assist platforms in optimizing user experience, improving emotional support systems within online communities, and informing the development of more targeted and responsive intervention strategies. [Method/Process] First, web scraping techniques were used to collect a large volume of depression-related posts from the Xiaohongshu platform as the primary data source. Second, representative keywords were extracted through Word2Vec and K-means clustering algorithms. A keyword co-occurrence network was then constructed using the Leiden clustering algorithm to identify semantic relationships. By integrating user attribute information, the study achieved a fine-grained classification of heterogeneous depression-prone user groups. Third, drawing on self-determination theory (SDT) and the technology acceptance model (TAM), and leveraging BERTopic for advanced topic modeling, the study constructed a comprehensive factor model to examine the mechanisms influencing user participation behavior in depth. [Results/Conclusions] The research identifies three distinct types of depression-prone users: adolescent depression expression, help-seeking expression, and emotional breakdown expression. Results indicate that posting and commenting behaviors across these groups are primarily driven by emotional needs and environmental factors. Emotional needs are the dominant motivator for active participation, while environmental influences significantly contribute to triggering interaction, especially within comment sections. Additionally, adolescent depression expression and emotional breakdown expression show stronger tendencies toward self-related needs, reflecting deeper emotional and identity concerns. In contrast, help-seeking expression exhibit more evident competence-related needs, focusing on practical advice and problem-solving. Although competence and technical factors account for a smaller proportion, they still play a meaningful supporting role in shaping the structure and substance of user participation behavior on UGC platforms.

Key words: User-Generated Content (UGC), BERTopic, user participatory behavior, Xiaohongshu, influencing factors, information behavior

CLC Number: 

  • G203

Fig.1

Research framework"

Table 1

Sample results of keyword extraction from user texts"

帖子标题 帖子内容 关键词
男朋友抑郁自杀未遂的第三天 还是很担心他现在不会和我主动说话了,除非我主动开启一天的话头,不知道我说些工作上的事情他想不想听,所以我也没有说太多,不说话又怕没有陪伴感给到他,异地他又不想见我,总感觉他现在好像需要我,又好像不是很需要我,我能做的只有把自己稳定好,陪他走过这一段时间了 感给、自杀未遂、好像、男朋友、抑郁、异地、怕、陪、走过、陪伴、想、不想、说话、感觉、见、听、担心、头、做、事情
收藏:抑郁症常用的6种药物的优缺点 据世界卫生组织报告显示,近10年全球受抑郁症影响人数增加,抑郁症常见的治疗方法,药物治疗加心理治疗。SSRI类抗抑郁药物目前在临床上使用最为广泛,已占据抗抑郁市场的半壁江山,其中包括舍曲林、艾司西酞普兰、帕罗西汀、氟伏沙明、氟西汀、西酞普兰 舍曲林、氟西汀、酞、西酞、优缺点、抗抑郁、心理治疗、近十年、氟、临床、明、药物、显示、方法、受、加、治疗、全球、包括、增加
抑郁症的行动力就是会很弱 我觉得这条分享除了能理解很无力很悲伤的情绪外,也给大家提个醒,抑郁症的行动力弱,不是懒,是真的做不了,一开始的症状可能是广泛性的拖延,做任何事情都觉得缺乏兴致,没有活力,后来重症的时候就会躯体化,完全处在一个瘫掉的状态。所以当你身边的人或者自己有这样表现的时候,一定要有警觉性,及时有效的干预,避免悲剧,就是生病了而已嘛,配合治疗总会好的 警觉性、很弱、做不了、兴致、力弱、懒、躯体、重症、悲伤、真的、生病、拖延、悲剧、情绪、力、配合、活力、干预、理解、无力
距离高考还有54天,我们还是决定休学了 怎么样才算是一个好妈妈呢?怎么样对待高三的孩子呢?老师说的对,要理解、要共情、要代入,不要咄咄逼人。女儿得了抑郁症,还是在高三这个紧张的节点,情绪身体方面有好转,但是在学校呆的就很难受,想好好学习却学不了,嗜睡、失眠、头痛,不应该待在这个高压的环境。和女儿商量了,也下定决心了,大不了养她一辈子嘛,日子还那么长,前路漫漫亦灿灿 共情、好好学习、难受、漫漫、嗜睡、失眠、下定决心、前路、头痛、代入、休学、商量、妈妈、养、呆、想、日子、紧张、高压、老师

Fig.2

Keyword co-occurrence network"

Table2

Keywords for the topic of adolescent depression expression types"

主题 主题占比/% 主题关键词 主题数/个
Topic0 51 孩子、父母、家长、表现、征兆、求救信号、语言、cos影响、暴力 31
Topic1 41 女儿、孩子、家庭、感觉、二次元、成绩、妈妈、真的、痛苦、世界 25

Fig.3

Example of a hierarchical clustering diagram (partial)"

Table 3

Comment themes of adolescent depression expression type"

影响因素 主题 占比/% 主题关键词 主题数/个
个人因素 自主需要

Topic6

Topic50

Topic75

24 倾诉、发自内心、苦尽甘来、熬过去、深得我心 34
能力需要

Topic20

Topic76

Topic108

11 神经递质、紊乱、羟色胺、肾上腺素、调理、补充、第六条 15
情感需要

Topic8

Topic105

Topic82

35 理解、祝您、拥抱、知音、宣泄、有理 48
环境因素 学业压力

Topic9

Topic13

Topic90

29 高三、压力、读研、学习、补课、补习班 40
技术因素 感知有用性

Topic12

Topic17

7 小红书、专业、这件、来小红书、刷到、医院、正规 12

Table 4

Topic keywords of help-seeking expression type"

主题 占比/% 主题关键词 主题数/个
Topic0 50 情绪、希望、患者、生活、理解、朋友、情感、自救、世界、痛苦 114
Topic1 17 工作、孩子、事情、长大、职场、学校、父母、时间、承受、不想 39
Topic2 6 医生、医院、挂号、阿姨、测试、量表、焦虑症、感觉、精神科、病友 13

Fig.4

Example of a hierarchical clustering diagram (partial)"

Table 5

Comment themes of help-seeking expression type"

影响因素 主题 占比/% 主题关键词 主题数/个
个人因素 自主需要

Topic1

Topic6

Topic295

3 momo、医生、医院、中医、吃药 8
能力需要

Topic184

Topic156

Topic93

Topic117

7 焦虑症、大脑、运动、做些、视频、听听音乐、症状、躯体、五个、intj、五条 22
情感需要

Topic120

Topic341

Topic49

Topic43

76

同感、抱抱、真实、没错、原来如此

谢谢、感恩、放心、好难、逃避、赞同、聊聊、睡不着、失眠、自杀、情感、很累

241
环境因素

工作压力

学习压力

亲子关系

Topic41

Topic310

Topic5

Topic204

Topic109

2

4

3

上班、辞职、管娃、出租屋

毕业、高三、荒废、研究生

原生、家长、孩子

5

12

9

技术因素

感知有用性

感知易用性

Topic157

Topic50

Topic158

Topic170

Topic219

Topic180

2

4

全中、确实、真有

五秒、找到啦、一分钟、不到、很快、只用

7

12

Table 6

Topic keywords of emotional breakdown expression type"

主题 占比/% 主题关键词 主题词数/个
Topic0 19 感觉、真的、装病、不想、感到、医生、朋友、患者、害怕 25
Topic1 11 运动、小猫、房间、环境、双相、办法、家里、兴趣、工作、状态 15
Topic2 11 孩子、大部分、障碍、级别、青少年、情感、一种、自我、成绩、背后 15
Topic3 10 希望、事情、不好、地方、不幸、拥抱、渴望、世界、自我、心理 13
Topic4 8 快乐、开心、情绪、休息、未来、林心如、轻松、击中、狠狠 11

Fig.5

Example of a hierarchical clustering diagram (partial)"

Table 7

Comment themes of emotional breakdown expression type"

影响因素 主题 占比/% 主题关键词 主题数/个
个人因素

情感需要

能力需要

Topic11

Topic52

Topic4

Topic110

75

1

很累、睡不着、好想哭、自杀、情绪、生气、很棒、抱抱、说得对、聊聊天、鼓励、交友、医生、自测、中医

医生、自测、中医

161

4

环境因素

工作压力

学习压力

Topic1

Topic212

Topic12

21 女孩、叛逆、学习、中式、教育、成绩、补课、产后、工作 44
技术因素 感知有用性

Topic152

Topic65

Topic98

4 小红书、几条、全中、讲出 9
[1]
唐婧云. 不同类型的在线抑郁社区特征及用户行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
TANG J Y. Research on characteristics and users behaviours of different types of online depression communities[D]. Harbin: Harbin Institute of Technology, 2022.
[2]
吴佳怡. 社交媒体平台抑郁症患者的网络表达与自我呈现探究: 以小红书社区为例[J]. 科技传播, 2023, 15(12): 130-132.
WU J Y. A study on online expression and self-presentation of depression patients on social media platform: Taking Xiaohongshu community as an example[J]. Public communication of science & technology, 2023, 15(12): 130-132.
[3]
程思宇, 阮建海, 邓小昭. 用户生成内容(UGC)平台用户数字囤积行为影响因素研究: 以小红书为例[J]. 图书情报工作, 2024, 68(4): 58-69.
CHENG S Y, RUAN J H, DENG X Z. Research on influencing factors of users' digital hoarding behavior on user-generated content platforms: Taking Xiaohongshu as an example[J]. Library and information service, 2024, 68(4): 58-69.
[4]
BRODIE R J, HOLLEBEEK L D, JURIĆ B, et al. Customer engagement: Conceptual domain, fundamental propositions, and implications for research[J]. Journal of service research, 2011, 14(3):252-271.
[5]
DAUGHERTY T, EASTIN M S, BRIGHT L. Exploring consumer motivations for creating user-generated content[J]. Journal of interactive advertising, 2008, 8(2): 16-25.
[6]
SHAHBAZNEZHAD H, DOLAN R, RASHIDIRAD M. The role of social media content format and platform in users' engagement behavior[J]. Journal of interactive marketing, 2021, 53: 47-65.
[7]
朱玲, 张薇薇. 知识付费情境下在线用户参与行为影响因素研究综述[J]. 图书馆学研究, 2021(2): 9-18, 8.
ZHU L, ZHANG W W. Review on online users' participation behavior in the context of knowledge payment[J]. Research on library science, 2021(2): 9-18, 8.
[8]
周阳, 谭春辉, 朱宸良, 等. 基于扎根理论的虚拟学术社区用户参与行为研究: 以小木虫为例[J]. 情报科学, 2022, 40(1): 176-183.
ZHOU Y, TAN C H, ZHU C L, et al. Virtual academic community users' engagement practices based on the grounded theory: Taking the small woodworms as an example[J]. Information science, 2022, 40(1): 176-183.
[9]
KHOBZI H, LAU R Y K, CHEUNG T C H. The outcome of online social interactions on Facebook pages[J]. Internet research, 2019, 29(1): 2-23.
[10]
DOLAN R, CONDUIT J, FRETHEY-BENTHAM C, et al. Social media engagement behavior[J]. European journal of marketing, 2019, 53(10): 2213-2243.
[11]
吴晨煜, 赵宇翔, 宋士杰, 等. 科普互动视频中交互特征对用户参与行为的影响[J]. 图书馆论坛, 2025, 45(3): 141-152.
WU C Y, ZHAO Y X, SONG S J, et al. The impact of interactive features on user engagement behavior in interactive videos for science popularization[J]. Library tribune, 2025, 45(3): 141-152.
[12]
于灏, 王鼎立, 白丽, 等. 内容策略视域下的企业号短视频用户参与行为研究[J]. 情报科学, 2023, 41(11): 85-93, 150.
YU H, WANG D L, BAI L, et al. User engagement behaviors of enterprise account short-form videos from the perspective of content strategies[J]. Information science, 2023, 41(11): 85-93, 150.
[13]
李力, 张弘, 郑方圆, 等. 需求驱动下虚拟数字人用户在线参与行为研究[J]. 情报资料工作, 2025, 46(1): 90-99.
LI L, ZHANG H, ZHENG F Y, et al. Research on the online participation behavior of virtual digital human users driven by demand[J]. Information and documentation services, 2025, 46(1): 90-99.
[14]
姜钰莹. 基于微博的抑郁倾向人群用户画像构建[D]. 长春: 吉林大学, 2021.
JIANG Y Y. Construction of user portrait of depressed people based on weibo[D]. Changchun: Jilin University, 2021.
[15]
中尾睦宏, 曲成业. 抑郁倾向[J]. 日本医学介绍, 2001, 22(7): 316-317. ,
NAKAO M, QU C Y. Depressive tendency[J]. Progress in Japanese medicine, 2001, 22(7): 316-317.
[16]
YAO X X, YU G, TIAN X Y, et al. Patterns and longitudinal changes in negative emotions of people with depression on sina weibo[J]. Telemedicine journal and e-health, 2020, 26(6): 734-743.
[17]
门秀萍, 魏瑞斌, 吴小兰. 社交网络中的抑郁症用户语言和行为特征分析及检测[J]. 现代情报, 2020, 40(6): 76-87.
MEN X P, WEI R B, WU X L. Analysis and detection of language and behavior characteristics of depression in social network[J]. Journal of modern information, 2020, 40(6): 76-87.
[18]
RESNIK P, ARMSTRONG W, CLAUDINO L, et al. Beyond LDA: Exploring supervised topic modeling for depression-related language in twitter[C]//Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality. Denver, Colorado. Stroudsburg, PA, USA: ACL, 2015: 99-107.
[19]
王哲, 向菲. 抑郁类在线健康社区用户参与行为现状及病耻感对其影响研究[J]. 医学信息学杂志, 2023, 44(12): 8-14, 28.
WANG Z, XIANG F. Study of the participation behavior status of depressive online health community users and the influence of stigma on it[J]. Journal of medical informatics, 2023, 44(12): 8-14, 28.
[20]
TIAN X Y, BATTERHAM P, SONG S, et al. Characterizing depression issues on sina weibo[J]. International journal of environmental research and public health, 2018, 15(4): 764.
[21]
方振宇. 基于词向量的微博用户抑郁预测方法研究[D]. 合肥: 合肥工业大学, 2017.
FANG Z Y. Research on depression prediction method of Weibo users based on word vectors[D]. Hefei: Hefei University of Technology, 2017.
[22]
罗亚玲, 赵泽瑞. 自我决定理论及其在我国信息资源管理领域的应用与展望[J]. 图书馆学研究, 2025(2): 13-21.
LUO Y L, ZHAO Z R. Self-determination theory and its application and prospects in the field of information resource management in China[J]. Research on library science, 2025(2): 13-21.
[23]
DECI E L, RYAN R M. Self-determination theory: A macrotheory of human motivation, development, and health[J]. Psychologie canadienne, 2008, 49(3): 182-185.
[24]
赵立, 付兵. 如何吸引我: 个性化推荐促进用户习惯形成的作用机制[J]. 财经论丛, 2025(2): 88-100.
ZHAO L, FU B. How to attract me: The underlying mechanism of user habit formation facilitated by personalized recommendations[J]. Collected essays on finance and economics, 2025(2): 88-100.
[25]
范哲, 刘奔. 用户人格特质对虚拟社区信息分享行为的影响研究: 以基本心理需要为中介变量[J]. 现代情报, 2019, 39(11): 69-79, 97.
FAN Z, LIU B. The effect of personality traits on information sharing in the virtue community: Based on basic psychological needs as intermediaries[J]. Journal of modern information, 2019, 39(11): 69-79, 97.
[26]
GAGNÉ M, DECI E L. Self-determination theory and work motivation[J]. Journal of organizational behavior, 2005, 26(4): 331-362.
[27]
张敏, 赵雅兰, 张艳. 基于自我决定理论的科研工作者知识利用行为形成机制与路径[J]. 图书馆杂志, 2018, 37(10): 12-19.
ZHANG M, ZHAO Y L, ZHANG Y. Formation mechanism and path of researchers' knowledge utilization behavior based on self-determination theory[J]. Library journal, 2018, 37(10): 12-19.
[28]
余来辉, 金恒江. 突发公共卫生事件中网络社群用户参与行为影响因素研究: 基于SDT和TPB整合模型[J]. 新世纪图书馆, 2021(9): 20-28.
YU L H, JIN H J. Research on the factors affecting online community users' participating behavior in public health emergency: Based on SDT and TPB integration model[J]. New century library, 2021(9): 20-28.
[29]
袁留亮. 基于自我决定理论的在线科研社群知识共享研究[J]. 现代情报, 2016, 36(2): 20-24.
YUAN L L. Construction of knowledge sharing concept model in online research community based on self-determination theory[J]. Journal of modern information, 2016, 36(2): 20-24.
[30]
ZHANG Y. Understanding the sustained use of online health communities from a self-determination perspective[J]. Journal of the association for information science and technology, 2016, 67(12): 2842-2857.
[31]
张博, 赵一铭, 乔欢. 基于自我决定理论的用户参与协同知识生产的动机因素探究[J]. 现代情报, 2016, 36(9): 95-100.
ZHANG B, ZHAO Y M, QIAO H. The factors explored of user participation in collaborative knowledge production based on the theory of the self-determination motivation[J]. Journal of modern information, 2016, 36(9): 95-100.
[32]
耿瑞利, 申静. 不同文化视域下社交网络用户知识共享行为动机研究[J]. 中国图书馆学报, 2019, 45(1): 60-81.
GENG R L, SHEN J. Research on SNS users' knowledge sharing motivation from different cultural perspectives[J]. Journal of library science in China, 2019, 45(1): 60-81.
[33]
相甍甍, 孙畹婷, 王晰巍, 等. 在线健康社区用户复合信息行为的实证研究: 信息共享和信息搜寻同步的视角[J]. 情报科学, 2022, 40(7): 111-119, 135.
XIANG M M, SUN W T, WANG X W, et al. An empirical study on users' composite information behavior in online health community: From the perspective of information sharing and information search synchronization[J]. Information science, 2022, 40(7): 111-119, 135.
[34]
AJZEN I. From intentions to actions: A theory of planned behavior[J]. Action control: From cognition to behavior/Springer, 1985:11-39.
[35]
CHEN X, SUN M X, WU D, et al. Information-sharing behavior on WeChat moments: The role of anonymity, familiarity, and intrinsic motivation[J]. Frontiers in psychology, 2019, 10: 2540.
[36]
WANG W T, HOU Y P. Motivations of employees' knowledge sharing behaviors: A self-determination perspective[J]. Information and organization, 2015, 25(1): 1-26.
[37]
VENKATESH V, DAVIS F D. A theoretical extension of the technology acceptance model: Four longitudinal field studies[J]. Management science, 2000, 46(2): 186-204.
[38]
张岌秋. 虚拟社区信息获取与信息共享意愿和行为的实证研究[J]. 情报科学, 2015, 33(8): 59-64, 119.
ZHANG J Q. Empirical research on information acquiring and information sharing intention and behavior in virtual communities[J]. Information science, 2015, 33(8): 59-64, 119.
[39]
谷重阳, 徐浩煜, 周晗, 等. 基于词汇语义信息的文本相似度计算[J]. 计算机应用研究, 2018, 35(2): 391-395.
GU C Y, XU H Y, ZHOU H, et al. Text similarity computing based on lexical semantic information[J]. Application research of computers, 2018, 35(2): 391-395.
[1] CUI Shaojie, LIU Yanping. Impact of Digital Literacy on Rural Governance Effectiveness: Based on the Survey of 306 Rural Residents in Xia County, Shanxi Province [J]. Journal of library and information science in agriculture, 2025, 37(4): 39-50.
[2] SHEN Mengcheng, CHEN Xiuping. Analysis of the Evaluation and Development Pathways for Rural Cultural-Tourism Integration Based on Online Text Data: A Case Study of 26 Mountainous Counties in Zhejiang Province [J]. Journal of library and information science in agriculture, 2025, 37(4): 66-82.
[3] GOU Ruike, LUO Wei. Influencing Factors of Continuous Use Intention of "Generation Z" Users of an AIGC Platform [J]. Journal of library and information science in agriculture, 2025, 37(3): 66-80.
[4] LI Xiao, QU Jiansheng. Influencing Factors of User Participation Intention of Crowdsourcing in Evidence Synthesis [J]. Journal of library and information science in agriculture, 2025, 37(3): 92-105.
[5] SHI Qin, XIE Jing, WU Shang. Influencing Factors and Correlations of User Satisfaction with Mobile Health Applications [J]. Journal of library and information science in agriculture, 2025, 37(1): 33-46.
[6] YOU Ge, LI Jielin, ZHANG Fangshun. Generating Mechanism of Online Public Opinion Heat in Public Emergencies from the Perspective of Information Ecology: Fuzzy Set Qualitative Comparative Analysis Based on 50 Cases [J]. Journal of library and information science in agriculture, 2025, 37(1): 86-99.
[7] Guowei GAO, Shanshan ZHANG, Jialan YU. A Review of Health Information Behaviors of Older People from the Perspective of Topic Differentiation [J]. Journal of library and information science in agriculture, 2024, 36(7): 34-49.
[8] Liqin YAO, Hai ZHANG. Model Construction and Empirical Research on the Influencing Factors of AIGC User Dropout Behavior [J]. Journal of library and information science in agriculture, 2024, 36(5): 79-92.
[9] Chunling GAO, Liyuan JIANG. Elderly People's Online Health Information Seeking Behavior Based on Evolutionary Dynamics [J]. Journal of library and information science in agriculture, 2024, 36(5): 65-78.
[10] LIU Yang, LYU Shuyue, LI Ruojun. Concept, Task, and Application of Social Robots in Information Behavior Research [J]. Journal of library and information science in agriculture, 2024, 36(3): 4-20.
[11] ZHOU Xin. Machine Functionalism and the Digital-Intelligence Divide: Evolutionary Pathways, Generative Logic and Regulatory Strategies [J]. Journal of library and information science in agriculture, 2024, 36(3): 59-71.
[12] SHI Yanqing, LI Lu, SHI Qin. Impact of User Heterogeneity on Knowledge Collaboration Effectiveness from a Network Structure Perspective [J]. Journal of library and information science in agriculture, 2024, 36(3): 72-82.
[13] WANG Yueying. Exploring the Causes of Low Health Information Literacy Among Rural Middle-Aged and Elderly Adults and its Improvement Strategies [J]. Journal of library and information science in agriculture, 2024, 36(2): 81-93.
[14] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of library and information science in agriculture, 2024, 36(2): 36-50.
[15] HAN Xi, LIAO Ke. Factors Influencing Misinformation Propagation: A Systemic Review [J]. Journal of library and information science in agriculture, 2024, 36(12): 45-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!