Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (6): 55-69.doi: 10.13998/j.cnki.issn1002-1248.25-0275
CHEN Yuanyuan1,2, FU Bin3, GAO Yuan3, QIAO Junwei1,2
CLC Number:
[1] | 唐恒, 邱悦文. 多源信息视角下的多指标新兴技术主题识别研究: 以智能网联汽车领域为例[J]. 情报杂志, 2021, 40(3): 81-88. |
TANG H, QIU Y W. Emerging technology topic identification based on multi-source information: Intelligent connected vehicle as an example[J]. Journal of intelligence, 2021, 40(3): 81-88. | |
[2] | 周萌, 朱相丽. 新兴技术概念辨析及其识别方法研究进展[J]. 情报理论与实践, 2019, 42(10): 162-169. |
ZHOU M, ZHU X L. Discrimination of the concept of emerging technologies and research progress on its identification methods[J]. Information studies: Theory & application, 2019, 42(10): 162-169. | |
[3] | YANG S, JIANG M. Research progress on the connotation, characteristics, and identification methods of emerging technologies[J]. Information science, 2023, 41(5): 181-190. |
[4] | GAO N, GAO J, CHEN H. Research on identification and evolutionary path analysis methods of emerging technologies: A case study of the integrated circuit field[J]. Information science, 2023, 41(3): 127-135, 172. |
[5] | 李欣, 王静静, 杨梓, 等. 基于SAO结构语义分析的新兴技术识别研究[J]. 情报杂志, 2016, 35(3): 80-84. |
LI X, WANG J J, YANG Z, et al. Identifying emerging technologies based on subject–action-object[J]. Journal of intelligence, 2016, 35(3): 80-84. | |
[6] | 项芮, 孙巍. 基于PhraseLDA-SNA和机器学习的技术主题影响力测度方法研究[J]. 农业图书情报学报, 2024, 36(4): 45-62. |
XIANG R, SUN W. Methodology for assessing the influence of technical topics based on PhraseLDA-SNA and machine learning[J]. Journal of library and information science in agriculture, 2024, 36(4): 45-62. | |
[7] | 赵磊,章成志.基于不同内容层面的特定领域研究主题差异分析研究[J].农业图书情报学报, 2021, 33(5): 14-27. |
ZHAO L, ZHANG C Z. Difference analysis of research topics in a specific domain based on different content levels[J]. Journal of library and information science in agriculture, 2021, 33(5): 14-27. | |
[8] | 张新猛, 刘江鹏, 范亚茹, 等. 产业链视角下专利新兴技术主题识别[J]. 情报杂志, 2023, 42(8): 96-101, 55. |
ZHANG X M, LIU J P, FAN Y R, et al. Identification emerging technology topics of patent from the perspective of industry chain[J]. Journal of intelligence, 2023, 42(8): 96-101, 55. | |
[9] | 汪大锟, 化柏林. 基于BERTopic的新兴技术主题识别研究[J]. 科技情报研究, 2025, 7(1): 131-140. |
WANG D K, HUA B L. Research on emerging technology topic identification based on BERTopic[J]. Scientific information research, 2025, 7(1): 131-140. | |
[10] | SONG B, LUAN C, LIANG D. Emerging technology topic recognition from the perspective of technical feature similarity[J]. Soft science, 2023, 37(12): 80-85, 108. |
[11] | 宋博文, 栾春娟, 梁丹妮. 机器学习视域下新兴技术主题识别研究: 基于技术特征相似性[J]. 现代情报, 2022, 42(9): 49-57. |
SONG B W, LUAN C J, LIANG D N. Recognition model of emerging technology topic from machine learning perspective: Based on similarity of technical characteristics[J]. Journal of modern information, 2022, 42(9): 49-57. | |
[12] | 任惠超, 黄庆龙, 张祖国, 等. 船舶领域新兴技术主题识别技术研究[J]. 情报理论与实践, 2022, 45(11): 103-106. |
REN H C, HUANG Q L, ZHANG Z G, et al. Research on topic identification technology of emerging technology in the ship field[J]. Information studies: Theory & application, 2022, 45(11): 103-106. | |
[13] | 王山, 谭宗颖. 关键核心技术识别赋能新质生产力发展:内在逻辑、现实挑战与实践路径[J]. 农业图书情报学报, 2024, 36(2): 26-35. |
WANG S, TAN Z Y. Identification of key core technologies enables the development of new quality productive forces[J]. Journal of library and information science in agriculture, 2024, 36(2): 26-35. | |
[14] | ZHANG K, LÜ L C, HAN T, et al. Research on emerging technology identification from the perspective of “paper-patent” correlation[J]. Information studies: Theory and application, 2024, 47(9). |
[15] | 冉从敬, 田文芳. 融合SVM-LDA与加权相似度的潜在新兴技术识别研究: 以人工智能领域为例[J]. 情报学报, 2024, 43(5): 563-574. |
RAN C J, TIAN W F. Identification of potential emerging technologies by fusing SVM-LDA and weighted similarity: Taking the field of artificial intelligence as an example[J]. Journal of the China society for scientific and technical information, 2024, 43(5): 563-574. | |
[16] | 董放, 刘宇飞, 周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志, 2017, 36(7): 40-45, 133. |
DONG F, LIU Y F, ZHOU Y. Prediction of emerging technologies based on LDA-SVM multi-class abstract of paper classification[J]. Journal of intelligence, 2017, 36(7): 40-45, 133. | |
[17] | 吴东雪, 沈桂兰. 一种基于LDA模型的新兴主题识别与探测方法[J]. 河南师范大学学报(自然科学版), 2024, 52(2): 72-80. |
WU D X, SHEN G L. An emerging topic identification and detection method based on LDA model[J]. Journal of Henan normal university (natural science edition), 2024, 52(2): 72-80. | |
[18] | LIU Y, XUE Y. Research on blockchain industry public opinion monitoring combining sentiment analysis and multivariate time series[J]. Information engineering, 2023, 9(1): 3-14. |
[19] | 刘婷, 赵亚娟. 技术机会识别研究综述与展望[J]. 农业图书情报学报, 2023, 35(7): 4-17. |
LIU T, ZHAO Y J. Review and prospect of research on technology opportunity identification[J]. Journal of library and information science in agriculture, 2023, 35(7): 4-17. | |
[20] | 张雪, 张志强, 朱冬亮. 基于时间序列分析的潜在学科交叉前沿主题识别研究[J]. 情报理论与实践, 2024, 47(4): 152-162. |
ZHANG X, ZHANG Z Q, ZHU D L. Identifying potential interdisciplinary front topics based on time series analysis[J]. Information studies: Theory & application, 2024, 47(4): 152-162. | |
[21] | 崔海燕, 李雅文, 徐欣. 基于时间卷积网络的科技需求主题热度预测算法[J]. 广西科学, 2022, 29(4): 627-633. |
CUI H Y, LI Y W, XU X. Algorithm of subject heat of science and technology demand prediction based on time convolution network[J]. Guangxi sciences, 2022, 29(4): 627-633. | |
[22] | CHEN W, CHEN W. Research on popularity prediction of emerging topics based on multivariable lstm model with bibliometric indicators[J]. Data analysis and knowledge discovery, 2022, 6(10): 35-45. |
[23] | 霍朝光, 霍帆帆, 董克. 基于LSTM神经网络的学科主题热度预测模型[J]. 图书情报知识, 2021, 38(2): 25-34. |
HUO C G, HUO F F, DONG K. The popularity prediction of scientific topics based on LSTM[J]. Documentation, information & knowledge, 2021, 38(2): 25-34. | |
[24] | 冯增喜, 李嘉乐, 葛珣, 等. 融合多策略改进鲸鱼优化算法及其应用[J]. 计算机集成制造系统, 2025, 31(2): 590-603. |
FENG Z X, LI J L, GE X, et al. Integrating multi-strategy improved whale optimization algorithm and its application[J]. Computer integrated manufacturing systems, 2025, 31(2): 590-603. | |
[25] | 许学国, 桂美增. 基于深度学习的技术预测方法: 以机器人技术为例[J]. 情报杂志, 2020, 39(8): 53-62. |
XU X G, GUI M Z. Technology forecast based on deep learning: Using robot technology as an example[J]. Journal of intelligence, 2020, 39(8): 53-62. | |
[26] | 龚扣林, 周宇, 丁笠, 等. 基于BiLSTM模型的漏洞检测[J]. 计算机科学, 2020, 47(5): 295-300. |
GONG K L, ZHOU Y, DING L, et al. Vulnerability detection using bidirectional long short-term memory networks[J]. Computer science, 2020, 47(5): 295-300. | |
[27] | 吴红, 伊惠芳, 马永新, 等. 面向专利技术主题分析的WI-LDA模型研究[J]. 图书情报工作, 2018, 62(17): 68-74. |
WU H, YI H F, MA Y X, et al. WI-LDA: Technical topic analysis in patents[J]. Library and information service, 2018, 62(17): 68-74. |
[1] | SHEN Mengcheng, CHEN Xiuping. Analysis of the Evaluation and Development Pathways for Rural Cultural-Tourism Integration Based on Online Text Data: A Case Study of 26 Mountainous Counties in Zhejiang Province [J]. Journal of library and information science in agriculture, 2025, 37(4): 66-82. |
|