中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (1): 86-99.doi: 10.13998/j.cnki.issn1002-1248.25-0084

Previous Articles     Next Articles

Generating Mechanism of Online Public Opinion Heat in Public Emergencies from the Perspective of Information Ecology: Fuzzy Set Qualitative Comparative Analysis Based on 50 Cases

YOU Ge1, LI Jielin2(), ZHANG Fangshun3   

  1. 1.School of Literature and Media, Nanfang College Guangzhou, Guangzhou 510970
    2.School of Literature and Media, Guangdong Polytechnic Normal University, Guangzhou 510665
    3.School of Business, Xiangtan University, Xiangtan 411105
  • Received:2024-11-23 Online:2025-01-05 Published:2025-04-27
  • Contact: LI Jielin E-mail:1503339384@qq.com

Abstract:

[Purpose/Significance] Public emergencies frequently trigger online public opinion, exacerbating public panic and threatening social stability. The intrinsic linkage between public emergencies and online discourse amplifies the dissemination of public emotions, attitudes, and perspectives across online platforms, creating a feedback loop that influences event dynamics. Investigating the generation mechanism of public opinion on hot topics in such contexts provides critical theoretical foundations for mitigating cyber discourse risks, while enhancing the accuracy and efficiency of governmental mangement over online public opinion. [Method/Process] From an information ecology perspective, this study employs fuzzy-set qualitative comparative analysis to examine the online public opinion heat of 50 public emergencies between 2020 and 2022. We analyze eight conditional variables across four dimensions - information, information person, information technology, and information environment - including peak propagation speed, peak event popularity, netizen attention, opinion leaders' communication power, important media participation, central media coverage, the proportion of the overall public opinion field, and event duration. Single-factor necessity detection and configuration analysis were performed, and robustness was tested by adjusting calibration points and consistency thresholds. Finally, based on empirical findings, we interpreted case studies and proposed a mechanism for the generation of online public opinion heat in public emergencies. [Results/Conclusions] The results reveal that information and information people are the primary drivers and key causes of hot public opinion. Although information environment and information technology are not necessary conditions, they still contribute to the process. In public emergencies, multiple factors jointly influence online public opinion, and no single factor alone determines its intensity. Rather, the complementarity of multiple factors can, to some extent, substitute for seemingly necessary conditions. The key findings reveal that the event's peak plays a dominant role in driving high online public opinion intensity, and directly triggers its rapid outbreak, while the absence of major media participation and short event duration - core conditions for non-hot events - significantly reduce public engagement due to limited coverage and transient attention. Additionally, opinion leaders' communication power exhibits a strong positive correlation with public opinion on hot topics, as their amplified expressions attract more attention from netizens and further amplify the momentum of the discourse. These findings will provide valuable insights for effectively managing and controlling online public opinion during emergencies. Future research should examine the impact of emotional shifts, such as positive, negative, and neutral emotions, on the virality of online public opinion during emergencies, while also exploring the underlying mechanisms of such emotional shifts. Additionally, future studies should differentiate between policy stages in emergency development and examine how policy interventions shape the dynamics of public opinion. Finally, network analysis techniques (e.g., forwarding relationship networks, key evolutionary network structures) should be employed to uncover the mechanisms that drive public opinion heat in emergency-related discourse.

Key words: information ecology, fuzzy set qualitative comparative analysis, public emergencies, internet public opinion heat, social media, information behavior

CLC Number: 

  • G353.1

Fig.1

Analytical framework for generating public opinion on hot topics in public emergencies"

Table 1

Research case database"

编号发生年份典型事件影响力指数编号发生年份典型事件影响力指数
12022东航搭载132人客机MU5735在广西梧州藤县坠毁94.0262022广东广州新增本土无症状1例74.1
22022四川泸定发生6.8级地震90.9272022广东惠州发生4.1级地震65.1
32022唐山一烧烤店内多名男子殴打女生89.9282022长春一餐厅起火致17人死亡64.2
42022佩洛西窜访台湾89.9292022兰州野生动物园观光车侧翻16人受伤62.1
52022重庆多处发生山火84.4302022台湾花莲发生5.9级地震62.1
62022四川雅安市芦山县发生6.1级地震82.6312022新疆阿勒泰7名工人因极寒天气遇难60.8
72022长沙一楼体发生倒塌82.1322022宁波发生一火灾事故致7人死亡58.1
82022动车D2809在贵州榕江站撞上泥石流脱线79.1332021西北工业大学遭受境外网络攻击57.7
92022青海省海北藏族自治州门源县发生6.9级地震78.8342021珠海隧道透水事故14名被困人员遇难74.7
102022新疆一高层住宅楼火灾致10人死亡78.2352021安徽太湖一皮卡车坠入山沟12人遇难65.6
112022四川彭州一河道突发山洪78.2362021山东发现首例新冠变异毒株感染确诊患者62.7
122022台湾连发多次地震77.6372021呼和浩特一小区爆炸致1死17伤61.4
132021河南遭遇特大暴雨98.4382021中印边防人员冲突79.2
142021广东再现本土确诊病例93.1392020台风“鹦鹉”在广东阳江海陵岛登陆71.5
152021山西多地遭暴雨袭击85.2402020全国医务人员确诊新冠肺炎1 716例70.7
162021安徽再现本土确诊病例84.4412020西藏那曲6.6级地震66.7
172021四川泸州6.0级地震82.8422020湖北武汉中心医院染新冠医生胡卫锋离世66.4
182021上海再增本土确诊病例80.4432020湖北黄梅近500名考生因暴雨被困66.3
192020青海发生7.4级地震79.7442020武汉一工地塔吊倒塌65.0
202020福建泉州一指定隔离酒店倒塌85.4452020宁波通报疫情典型案例:25人参加聚会被确诊62.6
212020疫情“吹哨人”李文亮医生因新冠肺炎去世84.8462020长沙一男子持刀行凶致3死2伤61.1
222020武汉宣布“封城”84.5472020山西五台山景区发生森林大火58.5
232020四川西昌突发森林大火83.7482020南昌街头发生恶性伤人交通事故58.1
242020贵州安顺一公交车坠入水库83.5492020台湾出现首例新冠病毒变种病例57.9
252020浙江温岭一油罐车爆炸80.6502020陕西煤矿事故被困七人全部遇难56.8

Table 2

Calibration rules for variable assignment"

变量类别变量名称变量赋值
结果变量舆情热度生成事件在自媒体和网络媒体上的累积传播效果加和
条件变量信息峰值传播速度事件在峰值时每小时达到的传播条数
事件热度峰值事件在单位时间内在自媒体和网络媒体上的传播效果
信息人网民关注度事件持续期间平均每小时信息传播条数
意见领袖传播力参与事件讨论的粉丝量排名前5的微博大V粉丝数量总和
信息环境重要媒体参与网络媒体参与事件报道的数量
央级媒体报道中央新闻单位×参与事件报道占比
整体舆论场占比事件最近1小时的热度÷当前所有在更新事件的热度
信息技术事件持续时间舆情疏解所耗时长

Table 3

Calibration points of condition and outcome variables"

变量类型变量名称完全不隶属交叉点完全隶属
结果变量舆情热度生成57.8474.7093.37
条件变量信息峰值传播速度37.40500.008 381.10
事件热度峰值954.0012 277.00148 720.60
信息人网民关注度1.7015.0099.70
意见领袖传播力1 696.407931.0053 603.30
信息环境重要媒体参与9.7082.00173.80
央级媒体报道0.010.090.79
整体舆论场占比0.010.080.68
信息技术事件持续时间74.10137.00575.90

Table 4

Necessity test results"

变量高热度舆情生成非高热度舆情生成
一致性覆盖度一致性覆盖度
峰值传播速度0.806 2950.929 7350.358 2570.470 451
~峰值传播速度0.540 7590.425 2620.946 4920.847 668
事件热度峰值0.830 9120.910 6590.380 2270.474 569
~事件热度峰值0.520 5810.424 4820.928 4200.862 126
网民关注度0.910 8150.921 2240.333 0970.383 673
~网民关注度0.390 6380.339 6490.931 6090.922 456
意见领袖传播力0.830 5080.934 1810.346 9170.444 394
~意见领袖传播力0.506 0530.404 9080.948 6180.864 385
重要媒体参与0.900 3230.919 2420.351 8780.409 147
~重要媒体参与0.421 3070.363 3830.930 5460.914 027
央级媒体报道0.675 9480.710 6490.464 5640.556 215
~央级媒体报道0.577 8850.486 5780.758 3270.727 149
整体舆论场占比0.887 8130.896 4960.355 0670.408 313
~整体舆论场占比0.414 0440.360 5060.909 9930.902 319
事件持续时间0.770 3790.820 7220.399 0080.484 093
~事件持续时间0.515 7380.429 7240.852 2330.808 675

Table 5

Configuration results of public opinion generation on hot topics in public emergencies"

变量高热度生成路径非高热度生成路径
H1H2H3~H1~H2
信息峰值传播速度
事件热度峰值
信息人网民关注度
意见领袖传播力
重要媒体参与
信息环境央级媒体报道
整体舆论场占比
信息技术事件持续时间
一致性0.9990.9900.9990.9980.991
覆盖原始度0.6870.2450.2890.6790.759
唯一覆盖度0.3540.0230.0130.0150.095
解的一致性0.9970.991
解的覆盖度0.7230.774

Fig.2

Scatter plot of condition variables versus public opinion on hot topics in public emergencies"

1 张一文, 齐佳音, 方滨兴, 等. 非常规突发事件网络舆情热度评价指标体系构建[J]. 情报杂志, 2010, 29(11): 71-75, 117.
ZHANG Y W, QI J Y, FANG B X, et al. Research on the index system of public opinion on Internet for abnormal emergency[J]. Journal of intelligence, 2010, 29(11): 71-75, 117.
2 满媛媛, 刘佳宁. 国内突发事件网络舆情研究进展[J]. 情报科学, 2020, 38(12): 170-177.
MAN Y Y, LIU J N. Research progress of network public opinion on emergencies in China[J]. Information science, 2020, 38(12): 170-177.
3 中共中央关于进一步全面深化改革推进中国式现代化的决定[N]. 人民日报, 2024-07-22(001).
4 习近平. 高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告[J]. 党建, 2022(11): 4-28.
5 杨建梁, 刘越男, 祁天娇, 等. 重大公共卫生事件中民众诉求的主题挖掘与演变透视[J]. 图书馆论坛, 2021, 41(4): 121-131.
YANG J L, LIU Y N, QI T J, et al. Topic mining and evolution analysis of public demands during major public health events[J]. Library tribune, 2021, 41(4): 121-131.
6 YOU G, GAN S Q, GUO H, et al. Public opinion spread and guidance strategy under COVID-19: A SIS model analysis[J]. Axioms, 2022, 11(6): 296.
7 王晰巍, 文晴, 赵丹, 等. 新媒体环境下自然灾害舆情传播路径及网络结构研究: 以新浪微博“雅安地震”话题为例[J]. 情报杂志, 2018, 37(2): 110-116.
WANG X W, WEN Q, ZHAO D, et al. Research on online public opinion dissemination path and network structure of natural disaster in new media environment: A case study of the topic of "Ya'an earthquake" in sina weibo[J]. Journal of intelligence, 2018, 37(2): 110-116.
8 喻健, 唐亚娟. 高校重大突发事件与舆情监测[J]. 新闻爱好者, 2011(18): 148-149.
YU J, TANG Y J. Major emergencies in colleges and universities and public opinion monitoring[J]. Journalism lover, 2011(18): 148-149.
9 刘鹏程, 孙梅, 李程跃, 等. H7N9事件网络舆情分析及其对突发公共卫生事件应对的启示[J]. 中国卫生事业管理, 2014, 31(10): 784-786.
LIU P C, SUN M, LI C Y, et al. Network public opinion analysis about H7N9 events and its revelation for public health emergency response[J]. Chinese health service management, 2014, 31(10): 784-786.
10 NING P S, CHENG P X, LI J, et al. COVID-19-related rumor content, transmission, and clarification strategies in China: Descriptive study[J]. Journal of medical Internet research, 2021, 23(12): e27339.
11 CHEN Q, MIN C, ZHANG W, et al. Unpacking the black box: How to promote citizen engagement through government social media during the COVID-19 crisis[J]. Computers in human behavior, 2020, 110: 106380.
12 王建亚, 宇文姝丽. 网络舆情生态系统的构成及运行机制研究[J]. 情报理论与实践, 2014, 37(1): 55-58, 16.
WANG J Y, YUWEN S L. Research on the composition and operation mechanism of online public opinion ecosystem[J]. Information studies: Theory & application, 2014, 37(1): 55-58, 16.
13 张明, 杜运周. 组织与管理研究中QCA方法的应用: 定位、策略和方向[J]. 管理学报, 2019, 16(9): 1312-1323.
ZHANG M, DU Y Z. Application of QCA in organizational and management research: Positioning, strategies and directions[J]. Chinese journal of management, 2019, 16(9): 1312-1323.
14 王阳, 沈忱. 大学生网络舆论危机事件的生成演化机理与治理路径[J]. 当代青年研究, 2016(4): 32-39.
WANG Y, SHEN C. Generation, evolution mechanism and governance path of online public opinion crisis events among college students[J]. Contemporary youth research, 2016(4): 32-39.
15 郑万军. 突发危机事件与网络舆情疏导——“6.1”长江沉船事件和“8.12”天津爆炸案的比较[J]. 情报杂志, 2016, 35(6): 47-51.
ZHENG W J. Sudden crisis events and online public opinion guidance: A comparison of "6.1 Yangtze River Shipwreck" and "8.12 Tianjin Explosion"[J]. Journal of intelligence, 2016, 35(6): 47-51.
16 陈龙. “借题发挥”: 一种中国特色的网络舆论话语生成模式[J]. 新闻与传播研究, 2019, 26(12): 67-83, 127.
CHEN L. "Exploiting the topic": A discourse generation model of Chinese online public opinion[J]. Journalism & communication research, 2019, 26(12): 67-83, 127.
17 韩玮, 陈安. 基于焦耳定律的公共危机事件网络舆情热度模型研究[J]. 情报科学, 2021, 39(2): 24-33.
HAN W, CHEN A. A heat model of public crisis events' online public opinion based on Joule's law[J]. Information science, 2021, 39(2): 24-33.
18 周子明, 高慎波. 高校网络舆情的生成逻辑、风险特点及应对策略研究[J]. 情报科学, 2022, 40(3): 152-158.
ZHOU Z M, GAO S B. Research on the generation logic, risk characteristics and coping strategies of university online public opinion[J]. Information science, 2022, 40(3): 152-158.
19 张亚明, 高祎晴, 宋雯婕, 等. 信息生态视域下网络舆情反转生成机理研究——基于40个案例的模糊集定性比较分析[J]. 情报科学, 2023, 41(3): 66-73.
ZHANG Y M, GAO Y Q, SONG W J, et al. Research on the generation mechanism of online public opinion reversal from the perspective of information ecology: A fuzzy-set qualitative comparative analysis based on 40 cases[J]. Information science, 2023, 41(3): 66-73.
20 李明, 曹海军. 信息生态视域下突发事件网络舆情生发机理研究——基于40起突发事件的清晰集定性比较分析[J]. 情报科学, 2020, 38(3): 154-159, 166.
LI M, CAO H J. Research on the generation mechanism of online public opinion in emergencies from the perspective of information ecology: A crisp-set qualitative comparative analysis based on 40 cases[J]. Information science, 2020, 38(3): 154-159, 166.
21 王洛忠, 李建呈. 网络时代突发性公共危机化解的影响因素及作用机制——基于40个案例的清晰集定性比较分析[J]. 现代传播(中国传媒大学学报), 2021, 43(9): 81-86.
WANG L Z, LI J C. Influencing factors and mechanisms of sudden public crisis resolution in the internet era: A crisp-set qualitative comparative analysis based on 40 cases[J]. Modern communication (journal of communication university of China), 2021, 43(9): 81-86.
22 张瑜烨, 叶哲佑. 都市圈突发公共事件传播的影响因子研究——基于21个案例的定性比较分析[J]. 当代传播, 2023(2): 69-76.
ZHANG Y Y, YE Z Y. Research on influencing factors of public emergency communication in metropolitan areas: A qualitative comparative analysis based on 21 cases[J]. Contemporary communication, 2023(2): 69-76.
23 张宇, 沈杨, 王杰. 主体行动视角下的网络舆论政策议程触发机制探究——基于40例网络公共事件的清晰集定性比较分析[J]. 情报理论与实践, 2021, 44(12): 88-96.
ZHANG Y, SHEN Y, WANG J. Research on the triggering mechanism of online public opinion policy agenda from the perspective of subject action: A crisp-set qualitative comparative analysis based on 40 cases[J]. Information studies: Theory & application, 2021, 44(12): 88-96.
24 李思佳, 郑德铭, 孙正义. 微博中基于用户特征的突发事件信息传播分析[J]. 农业图书情报学报, 2023, 35(11): 86-97.
LI S J, ZHENG D M, SUN Z Y. Analysis of information dissemination of emergencies based on weibo user characteristics[J]. Journal of library and information science in agriculture, 2023, 35(11): 86-97.
25 彭祝斌, 范岳鋆, 朱晨雨. 欧洲焦点事件在华传播热度的影响因素及作用机制——基于30起案例的模糊集定性比较分析[J]. 新闻与传播研究, 2021, 28(2): 106-125, 128.
PENG Z B, FAN Y J, ZHU C Y. Influencing factors and mechanisms of European focus events' communication heat in China: A fuzzy-set qualitative comparative analysis based on 30 cases[J]. Journalism & communication research, 2021, 28(2): 106-125, 128.
26 朱代琼, 王国华. 突发事件中网民社会情绪产生的影响因素及机理——基于三元交互决定论的多个案定性比较分析(QCA)[J]. 情报杂志, 2020, 39(3): 95-104.
ZHU D Q, WANG G H. Influencing factors and mechanism of netizens' social emotions in emergencies: A multi-case qualitative comparative analysis (QCA) based on triadic reciprocal determinism[J]. Journal of intelligence, 2020, 39(3): 95-104.
27 GOEL S, ANDERSON A, HOFMAN J, et al. The structural virality of online diffusion[J]. Management science, 2016, 62(1): 180-196.
28 VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151.
29 LORENZ-SPREEN P, MØNSTED B M, HÖVEL P, et al. Accelerating dynamics of collective attention[J]. Nature communications, 2019, 10(1): 1759.
30 STIEGLITZ S, DANG-XUAN L. Emotions and information diffusion in social media: Sentiment of microblogs and sharing behavior[J]. Journal of management information systems, 2013, 29(4): 217-248.
31 GUO L, ROHDE J A, WU H D. Who is responsible for Twitter's echo chamber problem?Evidence from 2016 U.S. election networks[J]. Information, communication & society, 2020, 23(2): 234-251.
32 MCCOMBS M E, SHAW D L. The agenda-setting function of mass media[J]. Public opinion quarterly, 1972, 36(2): 176-187.
33 ENTMAN R M. Cascading activation: Contesting the white house's frame after 9/11[J]. Political communication, 2003, 20(4): 415-432.
34 WEBSTER J G. The marketplace of attention: how audiences take shape in a digital age[M]. Cambridge, USA: MIT Press, 2014.
35 ANDREWS L, BREWER M. Social media and government responsiveness: The case of the 2011 UK riots[J]. Government information quarterly, 2013, 30(4): 335-342.
36 李晚莲, 高光涵. 突发公共事件网络舆情热度生成机理研究——基于48个案例的模糊集定性比较分析(fsQCA)[J]. 情报杂志, 2020, 39(7): 94-100.
LI W L, GAO G H. Research on the generation mechanism of public opinion heat in public emergencies: A fuzzy-set qualitative comparative analysis (fsQCA) based on 48 cases[J]. Journal of intelligence, 2020, 39(7): 94-100.
37 牟冬梅, 邵琦, 杨鑫禹, 等. 信息生态视域下突发公共事件网络舆情运行方式研究[J]. 现代情报, 2022, 42(03): 22-30.
MU D M, SHAO Q, YANG X Y, et al. Research on the operation mode of online public opinion in public emergencies from the perspective of information ecology[J]. Journal of modern information, 2022, 42(3): 22-30.
38 DOUGLAS E J, SHEPHERD D A, PRENTICE C. Using fuzzy-set qualitative comparative analysis for a finer-grained understanding of entrepreneurship[J]. Journal of business venturing, 2020, 35(1): 105970.
39 LEPPÄNEN P T, MCKENNY A F, SHORT J C. Qualitative comparative analysis in entrepreneurship: Exploring the approach and noting opportunities for the future[M]//Research Methodology in Strategy and Management. Bingley, England: Emerald Publishing Limited, 2019: 155-177.
40 SCHNEIDER C Q, WAGEMANN C. Doing justice to logical remainders in QCA: Moving beyond the standard analysis[J]. Political research quarterly, 2013, 66(1): 211-220.
[1] SHI Qin, XIE Jing, WU Shang. Influencing Factors and Correlations of User Satisfaction with Mobile Health Applications [J]. Journal of library and information science in agriculture, 2025, 37(1): 33-46.
[2] Long HAN, Jincheng GUO, Yiting LU, Qun ZHOU. Factors Influencing User Information Adoption in Virtual Communities of Interest: A Study Based on SEM and fsQCA [J]. Journal of library and information science in agriculture, 2024, 36(8): 82-95.
[3] Guowei GAO, Shanshan ZHANG, Jialan YU. A Review of Health Information Behaviors of Older People from the Perspective of Topic Differentiation [J]. Journal of library and information science in agriculture, 2024, 36(7): 34-49.
[4] Liqin YAO, Hai ZHANG. Model Construction and Empirical Research on the Influencing Factors of AIGC User Dropout Behavior [J]. Journal of library and information science in agriculture, 2024, 36(5): 79-92.
[5] Chunling GAO, Liyuan JIANG. Elderly People's Online Health Information Seeking Behavior Based on Evolutionary Dynamics [J]. Journal of library and information science in agriculture, 2024, 36(5): 65-78.
[6] LIU Yang, LYU Shuyue, LI Ruojun. Concept, Task, and Application of Social Robots in Information Behavior Research [J]. Journal of library and information science in agriculture, 2024, 36(3): 4-20.
[7] ZHOU Xin. Machine Functionalism and the Digital-Intelligence Divide: Evolutionary Pathways, Generative Logic and Regulatory Strategies [J]. Journal of library and information science in agriculture, 2024, 36(3): 59-71.
[8] SHI Yanqing, LI Lu, SHI Qin. Impact of User Heterogeneity on Knowledge Collaboration Effectiveness from a Network Structure Perspective [J]. Journal of library and information science in agriculture, 2024, 36(3): 72-82.
[9] WANG Yueying. Exploring the Causes of Low Health Information Literacy Among Rural Middle-Aged and Elderly Adults and its Improvement Strategies [J]. Journal of library and information science in agriculture, 2024, 36(2): 81-93.
[10] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of library and information science in agriculture, 2024, 36(2): 36-50.
[11] HAN Xi, LIAO Ke. Factors Influencing Misinformation Propagation: A Systemic Review [J]. Journal of library and information science in agriculture, 2024, 36(12): 45-63.
[12] Zheng WANG, Miao ZHUANG, Yudi ZHANG, Yaqi ZHANG. Factors Influencing Online Health Information Acquisition Behavior of Rural Elderly Groups in Western China: A Field Study from the Guanzhong Region of Shaanxi Province [J]. Journal of library and information science in agriculture, 2024, 36(10): 23-37.
[13] Yijia WAN, Liping GU. Behavioral Motivation and Influencing Factors of Graduate Students Using AIGC Tool: An Empirical Analysis Based on Questionnaire Survey [J]. Journal of library and information science in agriculture, 2024, 36(10): 4-22.
[14] XIE Yanjie. Review of Public Library Services to the Elderly in China [J]. Journal of library and information science in agriculture, 2023, 35(7): 18-26.
[15] LI Jing. Causes of Intergenerational Conflict Heath Information Behavior and Its Mechanism in Social Control in the Context of Public Health Emergencies [J]. Journal of library and information science in agriculture, 2023, 35(5): 74-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!