1 |
LIU Y F, NIU J W, ZHAO Q J, et al. A novel text classification method for emergency event detection on social media[C]//2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Guangzhou, China. IEEE, 2018: 1106-1111.
|
2 |
陈国兰. 基于爆发词识别的微博突发事件监测方法研究[J]. 情报杂志, 2014, 33(9): 123-128.
|
|
CHEN G L. Micro-blog emergencies detection approach based on burst words distinguishing[J]. Journal of intelligence, 2014, 33(9): 123-128.
|
3 |
张馨月, 宋绍成. 突发事件中基于支持向量机算法的文本分类研究[J]. 信息技术与信息化, 2022(8): 13-16.
|
|
ZHANG X Y, SONG S C. Research on text classification based on support vector machine algorithm in emergencies[J]. Information technology and informatization, 2022(8): 13-16.
|
4 |
闫宏丽, 罗永莲. 基于决策树方法的突发事件新闻分类[J]. 电子技术与软件工程, 2020(2): 194-195.
|
|
YAN H L, LUO Y L. Classification of emergency news based on decision tree method[J]. Electronic technology & software engineering, 2020(2): 194-195.
|
5 |
LAI S W, XU L H, LIU K, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, Texas. ACM, 2015: 2267-2273.
|
6 |
ZHOU B, ZOU L, MOSTAFAVI A, et al. VictimFinder: Harvesting rescue requests in disaster response from social media with BERT[J]. Computers, environment and urban systems, 2022, 95: 101824.
|
7 |
胡庭恺, 陈祖琴, 葛继科, 等. 开放领域新闻中基于自适应决策边界的突发事件识别和分类研究[J]. 情报理论与实践, 2023, 46(2): 194-200.
|
|
HU T K, CHEN Z Q, GE J K, et al. Research on the recognition and classification of emergency events based on adaptive decision boundaries in open domain news[J]. Information studies: Theory & application, 2023, 46(2): 194-200.
|
8 |
范昊, 何灏. 融合上下文特征和BERT词嵌入的新闻标题分类研究[J]. 情报科学, 2022, 40(6): 90-97.
|
|
FAN H, HE H. News title classification based on contextual features and BERT word embedding[J]. Information science, 2022, 40(6): 90-97.
|
9 |
宋英华, 吕龙, 刘丹. 基于组合深度学习模型的突发事件新闻识别与分类研究[J]. 情报学报, 2021, 40(2): 145-151.
|
|
SONG Y H, LYU L, LIU D. Study on identification and classification of emergency news based on the combined deep learning model[J]. Journal of the China society for scientific and technical information, 2021, 40(2): 145-151.
|
10 |
陈锟, 裴雷, 范涛. 基于多模态融合的突发事件分类研究[J]. 现代情报, 2023, 43(6): 24-34.
|
|
CHEN K, PEI L, FAN T. Research on emergency classification based on multimodal fusion[J]. Journal of modern information, 2023, 43(6): 24-34.
|
11 |
周红磊, 张海涛, 栾宇, 等. 基于文本—图像增强的突发事件识别及分类方法研究[J]. 情报理论与实践, 2024, 47(4): 181-188.
|
|
ZHOU H L, ZHANG H T, LUAN Y, et al. Research on emergencies identification and classification method based on text-image enhancement[J]. Information studies: Theory & application, 2024, 47(4): 181-188.
|
12 |
DODDINGTON G R, MITCHELL A, PRZYBOCKI M A, et al. The automatic content extraction (ACE) program-tasks, data, and evaluation[C]//2004 Fourth International Conference on Language Resources and Evaluation, Portugal, 2004. The European Language Resources Association (ELRA): LREC, 2004, 2(1): 837-840.
|
13 |
MIRZA P, SPRUGNOLI R, TONELLI S, et al. Annotating causality in the TempEval-3 corpus[C]//Proceedings of the EACL 2014 Workshop on Computational Approaches to Causality in Language (CAtoCL). Gothenburg, Sweden. Stroudsburg, PA, USAACL, 2014: 10-19.
|
14 |
LI X Y, LI F Y, PAN L, et al. DuEE: A large-scale dataset for Chinese event extraction in real-world scenarios[M]//Natural Language Processing and Chinese Computing. Cham: Springer International Publishing, 2020: 534-545.
|
15 |
ALAM F, QAZI U, IMRAN M, et al. HumAID: Human-annotated disaster incidents data from twitter with deep learning benchmarks[J]. Proceedings of the international AAAI conference on web and social media, 2021, 15: 933-942.
|
16 |
PALEN L, VIEWEG S, SUTTON J, et al. Crisis informatics: Studying crisis in a networked world[C]//Proceedings of the Third International Conference on E-Social Science, Ann Arbor, Michigan, 2007. United States: ConnectivIT Lab & the Natural Hazards Center University of Colorado, Boulder, 2007: 7-9.
|
17 |
OFLI F, ALAM F, IMRAN M. Analysis of social media data using multimodal deep learning for disaster response[J/OL]. arXiv:2004.11838, 2020.
|
18 |
JIN Z W, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, California, USA. ACM, 2017: 795-816.
|
19 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 突发事件分类与编码: GB/T 35561-2017 [S]. 北京: 中国标准出版社, 2018.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Emergency classification and coding: GB/T 35561-2017 [S]. Beijing: Standards Press of China, 2018.
|
20 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 自然灾害分类与代码: GB/T 28921-2012 [S]. 北京: 中国标准出版社, 2013.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Classification and codes for natural disasters: GB/T 28921-2012 [S]. Beijing: Standards Press of China, 2013.
|
21 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, 2019. North American: ACL, 2019: 4171-4186.
|
22 |
ZHANG Y, WALLACE B. A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification[EB/OL]. 2015: 1510.03820.
|