[1] 姜恩波, 李娜. 中国开放政府农业数据分析与评价[J]. 农业图书情报学报, 2020, 32(10): 4-15. JIANG E B, LI N.Analysis and evaluation of China's open govern-ment agricultural data[J]. Journal of agricultural library and infor-mation, 2020, 32(10): 4-15. [2] 翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述[J]. 中国科学: 生命科学, 2019, 49(6): 698-716. WENG Y, ZENG R, WU C M, et al.A review of research on agricultural plant phenotypes based on deep learning[J]. Science China: Life sciences, 2019, 49(6): 698-716. [3] 岑海燕, 朱月明, 孙大伟, 等. 深度学习在植物表型研究中的应用现状与展望[J]. 农业工程学报, 2020, 36(9): 1-16. CEN H Y, ZHU Y M, SUN D W, et al.Application status and prospects of deep learning in plant phenotype research[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(9): 1-16. [4] 袁培森, 黎薇, 任守纲, 等. 基于卷积神经网络的菊花花型和品种识别[J]. 农业工程学报, 2018, 34(5): 152-158. YUAN P S, LI W, REN S G, et al.Chrysanthemum flower type and variety recognition based on convolutional neural network[J]. Transactions of the Chinese society of agricultural engineering, 2018, 34(5): 152-158. [5] WU J T, YANG G, YANG H, et al.Extracting apple tree crown in-formation from remote imagery using deep learning[J]. Computers and electronics in agriculture, 2020, 174: 1-14. [6] RAUF H T, SALEEM B A, LALI M, et al.A citrus fruits and leaves dataset for detection and classification of citrus diseases through Q 5 machine learning[J]. Data in brief, 2019, 26: 1-7. [7] MYR J, KESKI-SAARI S, KIVINEN S, et al.Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks[J]. Remote sensing of environment, 2021, 256: 112322. [8] DYRMANN M, KARSTOFT H, MIDTIBY H S.Plant species classi-fication using deep convolutional neural network[J]. Biosystems en-gineering, 2016, 151: 72-80. [9] 吕盛坪, 李灯辉, 冼荣亨. 深度学习在我国农业中的应用研究现状[J]. 计算机工程与应用, 2019, 55(20): 24-33, 51. LV S P, LI D H, XIAN R H.The application research status of deep learning in agriculture in my country[J]. Computer engineering and applications, 2019, 55(20): 24-33, 51. [10] Manavalan R.Automatic identification of diseases in grains crops through computational approaches: A review[J]. Computers and electronics in agriculture, 2020, 178: 1-24. [11] 金瑛, 叶飒, 李洪磊. 基于ResNet-50深度卷积网络的果树病害智能诊断模型研究[J]. 农业图书情报学报, 2021, 33(4): 58-67. JIN Y, YE S, LI H L.The intelligent diagnosis model of fruit tree disease based on resNet-50[J]. Journal of library and information science in agriculture, 2021, 33(4): 58-67. |