[1] ZHAO W X, ZHOU K, LI J Y, et al. A survey of large language models[J]. arXiv Preprint, arXiv:2303.18223, 2023. [2] QIU X P, SUN T X, XU Y G, et al.Pre-trained models for natural lan-guage processing: A survey[J]. Science China technological sciences, 2020, 63(10): 1872-1897. [3] 毛进, 陈子洋. 基于深度学习的科技文献摘要结构功能识别研究[J]. 农业图书情报学报, 2022, 34(3): 15-27. MAO J, CHEN Z Y.A Deep learning based approach to structural function recognition of scientific literature abstracts[J]. Journal of library and information science in agriculture, 2022, 34(3): 15-27. [4] 康明. 深度学习预训练语言模型-案例篇: 中文金融文本情绪分类研究[M]. 北京: 清华大学出版社, 2022. KANG M.Deep learning pre-training language model-case: A study on emotion classification of Chinese financial texts[M]. Beijing: Tsinghua University Press, 2022. [5] HINTON G E, OSINDERO S, TEH Y W.A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554. [6] YUSUKE S.Java deep learning essentials[M]. Beijing: China Ma-chine Press, 2017: 97-113. [7] IENCO D, GAETANO R, INTERDONATO R, et al.Combining sen-tinel-1 and sentinel-2 time series via RNN for object-based land cov-er classification[C]// IGARSS 2019-2019 IEEE International Geo-science and Remote Sensing Symposium. Piscataway, New Jersey: IEEE, 2019: 4881-4884. [8] JI S H, VISHWANATHAN S V N, SATISH N, et al. BlackOut: Speeding up recurrent neural network language models with very large vocabularies[J]. arXiv Preprint, arXiv:1511.06909, 2015. [9] RNNLM Toolkit[EB/OL].[2023-02-20].https://github.com/IntelLabs/rnnlm. [10] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. arXiv Preprint, arXiv:1409.3215, 2014. [11] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv Preprint, arXiv:1406.1078, 2014. [12] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv Preprint, arXiv:1408.5882, 2014. [13] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[J]. arXiv Preprint, arXiv:1607.01759, 2016. [14] LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning[J]. arXiv Preprint, arXiv:1605.05101, 2016. [15] LAI S W, XU L H, LIU K, et al.Recurrent convolutional neural networks for text classification[C]// Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. New York: ACM, 2015: 2267-2273. [16] JOHNSON R, ZHANG T.Deep pyramid convolutional neural networks for text categorization[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2017: 562-570. [17] PAPPAS N, POPESCU-BELIS A. Multilingual hierarchical attention networks for document classification[J]. arXiv Preprint, arXiv:1707.00896, 2017. [18] KIM Y, LEE H, JUNG K. Attention-based convolutional neural networks for multi-label emotion classification[EB/OL].[2018-01-01]. http://sciencewise.info/articles/1804.00831/. [19] TensorFlow[EB/OL].[2023-02-25].https://tensorflow.google.cn/. [20] Deeplearning4j[EB/OL].[2023-02-25].https://github.com/deep-learning4j. [21] PyTorch[EB/OL].[2023-02-25].https://pytorch.org/. [22] Theano[EB/OL].[2023-02-25].https://pypi.org/project/Theano/. [23] Keras[EB/OL].[2023-02-25].https://keras.io/. [24] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv Preprint, arXiv:1301.3781, 2014. [25] LE Q V, MIKOLOV T.Distributed representations of sentences and documents[C]//ICML'14 Proceedings of the 31st International Conference on International Conference on Machine Learning. Beijing, China: ICML, 2014(32): 1188-1196. [26] JEFFREY P, RICHARD S, CHRISTOPHER D M.GloVe: Global vectors for word representation[EB/OL].[2018-12-29].https://nlp.stanford.edu/projects/glove/. [27] NIU L Q, DAI X Y, ZHANG J B, et al.Topic2Vec: Learning dis-tributed representations of topics[C]// 2015 International Conference on Asian Language Processing(IALP). Piscataway, New Jersey: IEEE, 2016: 193-196. [28] MOODY C E. Mixing dirichlet topic models and word embeddings to make lda2vec[J]. arXiv Preprint, arXiv:1605.02019, 2016. [29] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for im-age recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway, New Jersey: IEEE, 2016: 770-778. [30] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[J]. arXiv Preprint, arXiv:1706.03762, 2017. [31] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. arXiv Preprint, arXiv:1802.05365, 2018. [32] REDDY R. Universal language model fine-tuning for text classification[J]. arXiv Preprint, arXiv:1801.06146, 2018. [33] GPT-2[EB/OL].[2023-02-28].https://github.com/openai/gpt-2. [34] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv Preprint, arXiv:1810.04805, 2019. [35] DAI Z H, YANG Z L, YANG Y M, et al.Transformer-XL: Attentive language models beyond a fixed-length context[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. [36] YANG Z L, DAI Z H, YANG Y M, et al.XLNet: Generalized autore-gressive pretraining for language understanding[J]. arXiv Preprint, arXiv: 1906.08237, 2019. [37] ZHONG H X, ZHANG Z Y, LIU Z Y, et al.Open Chinese language pre-trained model zoo[EB/OL].[2020-03-18].https://github.com/thunlp/OpenCLaP. [38] CUI Y M, CHE W X, LIU T, et al.Pre-training with whole word masking for Chinese BERT[EB/OL].[2023-03-09].https://github.com/ymcui/Chinese-BERT-wwm. [39] XU L.RoBERTa for Chinese[EB/OL].[2022-06-15].https://github.com/brightmart/roberta_zh. [40] ALAN A, DUNCAN B, ROLAND V.Contextual string embeddings for sequence labeling[EB/OL].[2023-03-10].https://github.com/zalandoresearch/flair. [41] Stanford NLP[EB/OL].[2023-03-10].https://github.com/stanfordnlp. [42] ChatGPT: Optimizing language models for dialogue[EB/OL].[2023-03-16].https://openai.com/blog/chatgpt. [43] NISAN S, LONG O, JEFFREY W, et al.Learning to summarize with human feedback[C]//Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020: 3008-3021. [44] LEO G, JOHN S, JACOB H. Scaling laws for reward model overoptimization[J]. arXiv Preprint, arXiv:2210.10760, 2022. [45] GPT-4[EB/OL].[2023-03-16].https://openai.com/product/gpt-4. [46] 刘高畅, 杨然. ChatGPT需要多少算力[R/OL]. 北京: 国盛证券, 2023. LIU G C, YANG R.How much computing power does ChatGPT require[R/OL]. Beijing: Guosen Securities, 2023. [47] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al.Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15: 1929-1958. [48] Al text classifier[EB/OL].[2023-03-16].https://platform.openai.com/ai-text-classifier. [49] AIGC-X[EB/OL].[2023-03-16]. http://ai.sklccc.com. [50] VAN DIS E A M, BOLLEN J, ZUIDEMA W, et al. ChatGPT: Five priorities for research[J]. Nature, 2023, 614(7947): 224-226. [51] Prompt engineer and librarian[EB/OL].[2023-03-31].https://jobs.lever.co/Anthropic/e3cde481-d446-460f-b576-93cab67bd1ed. [52] 张智雄, 钱力, 谢靖, 等. ChatGPT对科学研究和文献情报工作的影响[R/OL]. 北京: 国家科技图书文献中心 & 中国科学院文献情报中心, 2023. ZHANG Z X, QIAN L, XIE J, et al.The Impact of ChatGPT on scientific research and documentation and information work[R/OL]. Beijing: National Science and Technology Library & National Science Library of Chinese Academy of Sciences, 2023. [53] 张晓林. 从猿到人:探索知识服务的凤凰涅槃之路[J]. 数据分析与知识发现, 2023, 7(3): 1-4. ZHANG X L.From ape to man: Exploring the phoenix nirvana road of knowledge service[J]. Data analysis and knowledge discovery, 2023, 7(3): 1-4. [54] 曹树金, 曹茹烨. 从ChatGPT看生成式AI对情报学研究与实践的影响[J]. 现代情报, 2023, 43(4): 3-10. CAO S J, CAO R Y.Influence of generative AI on the research and practice of information science from the perspective of ChatGPT[J]. Journal of modern information, 2023, 43(4): 3-10. |