中文    English

Journal of library and information science in agriculture

   

Optimizing the Path of Cultivating Intellectual Property Literacy among College Students through AIGC Empowerment

FENG Li1, GUO Bochi2, GAO Mian1()   

  1. 1. Library of Hohai University, Nanjing 210098
    2. Nanjing Aokai Intellectual Property Services Co. , Ltd. , Nanjing 210000
  • Received:2025-08-23 Online:2025-10-29
  • Contact: GAO Mian

Abstract:

[Purpose/Significance] The rapid expansion of artificial intelligence generated content (AIGC) is transforming how intellectual property (IP) literacy is cultivated in universities. Conventional approaches, often constrained by disciplinary fragmentation, uneven teaching capacity, and time–space limitations, are increasingly misaligned with human-AI collaborative learning. Against this backdrop, IP literacy must integrate legal knowledge, ethical judgment, compliance awareness, and AI-enabled creative practice. This study clarifies the renewed connotations of IP literacy in the AIGC era, develops a theoretically grounded model of influencing factors, and examines how multiple educational conditions combine to generate high-level outcomes. By focusing on IP literacy rather than generic digital competence, the paper addresses a clear gap in existing research and offers a configuration-based understanding that links theory to implementable strategies for intelligent, student-centered IP literacy education. [Method/Process] Grounded in Activity Theory, the study developed a six-dimensional framework consisting of the following variables: teacher professional competence, AI-IP awareness, diversified educational support, role division, evaluation mechanisms, and AI resources. These variables were operationalized via a structured questionnaire. Fuzzy-set Qualitative Comparative Analysis (fsQCA) was then employed to identify conjunctural causality and equifinal pathways that extend beyond linear models. High-outcome configurations were achieved through variable calibration, truth-table analysis, and minimization. Robustness was confirmed by tightening the PRI consistency threshold from 0.80 to 0.85. The path structure, overall coverage, and overall consistency remained stable. [Results/Conclusions] Findings show that AIGC-enabled IP literacy emerges through multiple effective configurational paths, rather than a single dominant factor. Across high-outcome configurations, teacher professional competence, AI–IP awareness, and diversified educational support consistently function as core drivers that shape learning processes and outcomes. Evaluation mechanisms and AI resources act as complementary or substitutive conditions, reinforcing effectiveness under specific institutional and resource constraints. Three typical paths were identified: a path emphasizing practice generation coupled with collaborative organization; a path that integrates resource sharing with practice-oriented development; and a path highlighting collaborative division of labor and effective communication to compensate for limited technical supply. Together, these paths confirm the internal logic of the six-dimensional model and demonstrate that coordinated configurations, rather than isolated improvements, are necessary to optimize IP literacy education in AI-rich contexts. Practical implications include strengthening AI-oriented teacher development, embedding AI-IP awareness in curricula and supporting services, building cross-unit collaboration mechanisms, and aligning role division and process evaluation with available AI resources. Although the cross-sectional design and limited scope constrain generalizability, the results provide a theoretically grounded and empirically supported basis for developing intelligent, collaborative, and student-centered IP literacy systems and offer a foundation for future longitudinal and comparative research in AIGC-enabled higher education.

Key words: intellectual property literacy education, AIGC, influencing factor, configuration path, fuzzy-set qualitative comparative analysis, information literacy

CLC Number: 

  • G258.6

Fig.1

Model of factors influencing intellectual property literacy of college students with the empowerment of AIGC"

Table 1

Variable measurement items and measurement content"

变量 测量题项及内容 来源
专业素质

①教师熟悉掌握AI工具,并持续关注自身能力的提升,不断更新知识储备

②教师拥有扎实的知识产权专业知识和教学技能,能将AIGC融入教学过程

③教师能够利用AIGC设计个性化的知识产权教学方案,满足不同学生学习需求

④教师利用AIGC提供场景模拟,将知识产权知识和技能运用到创新创业指导

[33]
AI+IP意识

①使用AIGC辅助知产学习时,我会主动检查其数据来源的合法性与内容的合规性

②使用AIGC辅助知产学习时,我会严格遵守生成内容的权利归属规则,并尊重原创者与权利人的合法权益

③使用AIGC辅助知产学习时,我认为有责任确保整个过程符合道德规范与法律法规

④我认为AIGC对于知识产权课程的学习具有重要的应用价值

[34,35]
多元教育

①学校设置人工智能基础课与融合课模块,积极打造“人工智能+”知识产权课程体系

②知识产权课程由图书馆、创业创业指中心、人工智能等学院协同开展

③学校紧抓AIGC发展机遇,开展多元化的AI+知识产权科普活动

④学校会依托联合导师、项目合作、实训实习等方式,开展人才校企联合培养

[36]
角色分工

①在AIGC协作教学中,各参与主体角色分工明确,协作高效顺畅

②教师与AIGC通过协同教学设计与质量评估达成行动共识、角色共识

③学习者利用AIGC根据自身需求定制与获取学习资源,拥有充分的交互自主权

④活动相关主体在价值理念上达成利益一致、目标同向,在实践中实现行动协同

[37,38]
评价机制

①AIGC反馈的过程数据,有助于教师及时调整知识产权教学策略

②AIGC反馈的学情数据,能准确反映我的学习进展,有助于调整个人学习策略

③AIGC可根据定制化的需求进行拓展,提供个性化的指导建议

④我觉得引入AIGC的过程评价机制,可显著提升知识产权素养培育效果

[39,40]
AI资源

①学校在知识产权通识课程教学中嵌入AIGC辅助教学功能

②学校拥有AI+知识产权数字资源库和分析工具,帮助学生快速查找和分析相关资料

③学校建设AI+智能教学系统,集成智能助教、智能学伴、知识图谱等,为学生提供个性化知识产权学习服务

④学校建有AI+虚拟仿真实验平台,为学生提供模拟的知识产权实践场景

[41]
知识产权素养

①我不仅熟悉知识产权的基础理论与法规,更能主动运用AIGC,将理论知识转化为实际应用能力

②我具备识别和评估日常知识产权风险的能力,善于利用AIGC分析潜在问题,并制定避免侵权的策略

③我在学习和生活中坚持尊重并合法使用他人知识产权,运用AIGC进行合规性验证,确保行为正当

④我能有效运用知识产权知识来保护个人创新,并积极借助AIGC,主动维护自身的知识产权权益

[42]

Table 2

Statistics of sample distribution characteristics"

类别 分类 频数 占比/%
性别 249 53.78
214 46.22
学历 大学本科生 195 42.12
硕士研究生 167 36.07
博士研究生 101 21.81
专业 人文社科类 98 21.17
理工类 169 36.50
医学类 154 33.26
农学类及其他 42 9.07

Table 3

Results of reliability and validity tests"

变量 测度项 因子荷载 Cronbach's α AVE CR

专业素质

(A)

A1 0.782 0.853 0.593 0.853
A2 0.767
A3 0.749
A4 0.782
AI+IP意识(B) B1 0.792 0.858 0.601 0.858
B2 0.765
B3 0.767
B4 0.777
多元教育(C) C1 0.731 0.860 0.606 0.861
C2 0.787
C3 0.788
C4 0.806
角色分工(D) D1 0.804 0.862 0.610 0.862
D2 0.742
D3 0.782
D4 0.796
评价机制(E) E1 0.784 0.857 0.616 0.857
E2 0.762
E3 0.810
E4 0.744

AI资源

(F)

F1 0.785 0.865 0.656 0.866
F2 0.795
F3 0.779
F4 0.781
知识产权素养(X) X1 0.812 0.884 0.656 0.884
X2 0.800
X3 0.832
X4 0.794

KMO=0.929

近似卡方=6 130.030

Sig=0.000

Table 4

Results of single variable necessity test"

变量 高知识产权素养 非高知识产权素养
一致性 覆盖度 一致性 覆盖度
专业素质 0.770 775 0.672 269 0.536 124 0.437 082
~专业素质 0.354 598 0.449 888 0.598 003 0.709 175
AI+IP意识 0.760 742 0.668 090 0.544 011 0.446 568
~ AI+IP意识 0.369 817 0.464 572 0.595 664 0.699 438
多元教育 0.797 150 0.661 301 0.566 671 0.439 412
~多元教育 0.324 253 0.444 612 0.563 209 0.721 853
角色分工 0.778 498 0.669 110 0.544 217 0.437 214
~角色分工 0.345 208 0.447 603 0.588 127 0.712 796
评价机制 0.786 717 0.696 420 0.504 822 0.417 708
~评价机制 0.342 209 0.425 072 0.633 106 0.735 071
AI资源 0.770 722 0.667 411 0.546 024 0.441 966
~AI资源 0.355 585 0.455 922 0.589 103 0.706 024

Table 5

AIGC-enabled configuration path for intellectual property literacy education for college students"

变量 高知识产权素养
组态H1 组态H2 组态H3
专业素质
AI+IP意识
多元教育
角色分工
评价机制
AI资源
原始覆盖度 0.623 805 0.541 544 0.533 196
唯一覆盖度 0.106 967 0.024 706 1 0.016 358 1
一致性 0.937 600 0.947 741 0.949 327
总体覆盖度 0.681 268
总体一致性 0.913 283
[1]
苏联工智能生成内容(AIGC)白皮书[R]. 北京: 中国信息通信研究院, 京东探索研究院, 2022: 4.
[2]
吴丹, 白芳睿. 数智赋能信息资源管理学科“双核四驱”教学模式优化研究: 以信息描述课程为例[J]. 图书馆学研究, 2025(2): 35-43.
WU D, BAI F R. Research on optimization of "dual-core, four-wheel drive" teaching mode in information resource management empowered by AI: A case study of the course "information description"[J]. Research on library science, 2025(2): 35-43.
[3]
李浩君, 黄沁儒, 陈伟, 等. 人智协同迭代共生教学模式研究: AIGC的融入与实践效果分析[J]. 现代教育技术, 2025, 35(1): 81-88.
LI H J, HUANG Q R, CHEN W, et al. Research on human-AI collaborative iterative symbiosis teaching mode: Analysis of the integration and practical effect of AIGC[J]. Modern educational technology, 2025, 35(1): 81-88.
[4]
HOUSTON A B, CORRADO E M. Embracing ChatGPT: Implications of emergent language models for academia and libraries[J]. Technical services quarterly, 2023, 40(2): 76-91.
[5]
詹希旎, 李白杨, 孙建军. 数智融合环境下AIGC的场景化应用与发展机遇[J]. 图书情报知识, 2023, 40(1): 75-85, 55.
ZHAN X N, LI B Y, SUN J J. Application scenarios and development opportunities of AIGC in the digital intelligence integration environment[J]. Documentation, information & knowledge, 2023, 40(1): 75-85, 55.
[6]
汪聪, 张春红, 高楠, 等. 面向人工智能生成内容时代的图书馆服务适应与创新[J]. 情报理论与实践, 2024, 47(7): 17-24.
WANG C, ZHANG C H, GAO N, et al. Adaptation and innovation of library services in the age of artificial intelligence generating content[J]. Information studies: Theory & application, 2024, 47(7): 17-24.
[7]
刘彩娥, 韩丽风. AIGC背景下高校信息素养教育的发展[J]. 大学图书馆学报, 2024, 42(2): 46-51.
LIU C E, HAN L F. The development of information literacy education in colleges in the context of AIGC[J]. Journal of academic libraries, 2024, 42(2): 46-51.
[8]
华子荀, 王炜, 吴开华, 等. 如何发挥AIGC的教育效能 : 基于响应面分析的数字素养高意识能力培养[J]. 现代教育技术, 2024, 34(9): 14-25.
HUA Z X, WANG W, WU K H, et al. How to exert the educational effectiveness of AIGC : The cultivation of high-awareness ability of digital literacy based on the response surface methodology[J]. Modern educational technology, 2024, 34(9): 14-25.
[9]
董焕晴, 曹高辉, 庹沛. 生成式AI工具用户信息搜寻行为形成路径——以数字素养与人工智能素养为视角[J]. 图书馆论坛, 2025, 45(10): 152-160.
DONG H Q, CAO G H, TUO P. Formation path of information search behavior of users of generative AI Tools: A perspective of digital literacy and AI literacy[J]. Library tribune, 2025, 45(10): 152-160.
[10]
罗青兰, 苏春辉, 秦彩萍, 等. 高校知识产权教育的现状与对策研究[J]. 情报科学, 2007, 25(8): 1167-1170, 1175.
LUO Q L, SU C H, QIN C P, et al. Research on the present situation and countermeasures of intellectual property education in colleges and universities[J]. information science, 2007, 25(8): 1167-1170, 1175.
[11]
中国政府网. 国务院办公厅关于转发知识产权局等单位深入实施国家知识产权战略行动计划(2014-2020年)的通知[EB/OL]. [2024-12-01].
[12]
中国政府网. 国务院关于印发“十四五”国家知识产权保护和运用规划的通知[EB/OL]. [2024-12-07].
[13]
黄凯健, 肖可以, 李成林, 等. 中外高校图书馆知识产权素养教育调查与分析[J]. 高校图书馆工作, 2021, 41(6): 66-72.
HUANG K J, XIAO K Y, LI C L, et al. Investigation and analysis of intellectual property literacy education in Chinese and foreign university libraries[J]. Library work in colleges and universities, 2021, 41(6): 66-72.
[14]
徐春, 张静, 孟勇, 等. 高校图书馆知识产权信息素养教育现状及发展对策研究[J]. 图书馆学研究, 2021(24): 22-30.
XU C, ZHANG J, MENG Y, et al. Research on the present situation and development countermeasures of intellectual property information literacy education in university libraries[J]. Researches in library science, 2021(24): 22-30.
[15]
唱婷婷, 杨新涯, 沈敏, 等. 高校图书馆多层级知识产权素养教育模式研究: 以重庆大学图书馆为例[J]. 大学图书馆学报, 2021, 39(4): 73-80.
CHANG T T, YANG X Y, SHEN M, et al. Research on multi-level intellectual property literacy education mode of university library: Taking Chongqing University library as an example[J]. Journal of academic libraries, 2021, 39(4): 73-80.
[16]
张建媛, 暴瑛. 基于ACRL高等教育信息素养框架的知识产权素养教育思考[J]. 图书馆界, 2022(5): 61-67.
ZHANG J Y, BAO Y. Reflections on intellectual property literacy education based on ACRL higher education information literacy framework[J]. Library world, 2022(5): 61-67.
[17]
刘彩霞. 高校图书馆工科大学生知识产权素养提升策略研究: 以天津科技大学为例[J]. 图书馆工作与研究, 2022(5): 66-75.
LIU C X. Research on the promotion strategy of intellectual property literacy of engineering college students in university library: Taking Tianjin University of science and technology as an example[J]. Library work and study, 2022(5): 66-75.
[18]
刘敏. “双一流”高校图书馆知识产权素养教育现状及优化策略[J]. 图书馆, 2022(2): 51-59.
LIU M. Current situation and optimization strategy of intellectual property literacy education in "double first-class" university libraries[J]. Library, 2022(2): 51-59.
[19]
TRENCHEVA T. Integrating of intellectual property training in library and information science: Ulsit's formal educational model[J]. ICERI2019 proceedings, 2019, 1: 7462-7466.
[20]
鄂丽君, 马兰. 高校图书馆知识产权素养教育研究[J]. 图书馆工作与研究, 2020(4): 106-111, 128.
E L J, MA L. Research on intellectual property literacy education in university libraries[J]. Library work and study, 2020(4): 106-111, 128.
[21]
刘杰, 袁永旭, 吴娟. 新质生产力视角下: 高校图书馆知识产权素养教育提升策略研究[J]. 农业图书情报学报, 2025, 37(3): 32-41.
LIU J, YUAN Y X, WU J. Strategies for enhancing intellectual property literacy education in academic libraries from the perspective of new quality productive forces[J]. JournaI of library and lnformation science in agriculture, 2025, 37(3): 32-41.
[22]
刘俊晓, 李爽. 高校科研人员知识产权素养评价指标体系构建研究[J]. 情报科学, 2025, 43(3): 58-68.
LIU J X, LI S. Construction of intellectual property literacy evaluation index system for university researchers[J]. Information science, 2025, 43(3): 58-68.
[23]
雷怡, 邓仪友. 知识产权文化素养水平测度及影响因素分析[J]. 知识产权, 2023, 33(9): 108-126.
LEI Y, DENG Y Y. Measurement of intellectual property cultural literacy level and analysis of influencing factors[J]. Intellectual property, 2023, 33(9): 108-126.
[24]
刘朝, 师洪波, 张靖, 等. 研究生通识教育与复合人才培养协调的实证研究: 基于中科院知识产权教育的调查[J]. 研究生教育研究, 2013(2): 39-44.
LIU C SHI H B, ZHANG J, et al. An empirical study on the coordination between general education of postgraduates and training of compound talents: Based on the investigation of intellectual property education of Chinese academy of sciences[J]. Education and modernization, 2013(2): 39-44.
[25]
CHOI S Y, NAM W S. A study on the status analysis for the revitalization of design intellectual property education[J]. Korea institute of design research society, 2020, 5(4): 180-190.
[26]
KIMOON P. Educational needs analysis on NCS-based intellectual property education[J]. Journal of the Korean institute of industrial educators, 2018, 43(1): 134-157.
[27]
李剑, 尤伟光, 林静, 等. 面向区域创新的高校图书馆知识产权信息服务绩效评价研究[J]. 情报科学, 2023, 41(6): 161-169, 191.
LI J, YOU W G, LIN J, et al. Research on performance evaluation of intellectual property information service in university libraries for regional innovation[J]. Information science, 2023, 41(6): 161-169, 191.
[28]
YOUSAF H Q, REHMAN S, AHMED M, et al. Investigating students' satisfaction in online learning: The role of students' interaction and engagement in universities[J]. Interactive learning environments, 2023, 31(10): 7104-7121.
[29]
TYAGI S K, KRISHANKUMAR R. Examining interactions of factors affecting e-learning adoption in higher education: Insights from a fuzzy set qualitative and comparative analysis[J]. Journal of science and technology policy management, 2024, 15(6): 1387-1407.
[30]
SPASSER M A. Informing information science: The case for activity theory[J]. Journal of the American society for information science, 1999, 50(12): 1136-1138.
[31]
李春秋, 赵胜男, 张萌, 等. 活动理论视角下高校图书馆AI素养培育策略研究[J]. 图书馆学研究, 2025(4): 103-115.
LI C Q, ZHAO S N, ZHANG M, et al. Strategies for AI literacy cultivation in university libraries from the perspective of activity theory[J]. Research on library science, 2025(4): 103-115.
[32]
陈颖仪. 活动理论视角下公共图书馆全民数字素养教育提升路径[J]. 图书馆工作与研究, 2024(4): 61-69.
CHEN Y Y. Promotion paths of national digital literacy education in public libraries from the perspective of activity theory[J]. Library work and study, 2024(4): 61-69.
[33]
易凯谕, 韩锡斌. 从混合教学到人智协同教学: 生成式人工智能技术变革下的教学新形态[J]. 中国远程教育, 2025(4): 85-98.
YI K Y, HAN X B. From blended teaching to human-AIGC collaborative teaching: New teaching models under the transformation of generative AI technology[J]. Chinese journal of distance education, 2025(4): 85-98.
[34]
陈士林, 苏益南, 何铭. 高校大学生知识产权意识提升研究[J]. 中国高教研究, 2012(5): 77-81.
CHEN S L, SU Y N, HE M. Study on the promotion of college students' awareness of intellectual property rights[J]. China higher education research, 2012(5): 77-81.
[35]
桂橙林, 赵旭宏, 张鹏程, 等. 数智化背景下员工AI意识对其创新绩效的影响机制[J]. 中国人力资源开发, 2024, 41(8): 6-22.
GUI C L, ZHAO X H, ZHANG P C, et al. The influence mechanism of employees' AI consciousness on their innovation performance under the background of digital intelligence[J]. Human resource development of China, 2024, 41(8): 6-22.
[36]
耿荣娜. 信息化时代大学生数字素养教育的关键影响因素研究[J]. 情报科学, 2020, 38(9): 42-48.
GENG R N. Key influencing factors of digital literacy education for college students in the information age[J]. Information science, 2020, 38(9): 42-48.
[37]
郭胜男, 吴永和. 社会角色理论视域下的人工智能时代教师: 困厄、归因及澄明[J]. 电化教育研究, 2022, 43(6): 18-24, 60.
GUO S N, WU Y H. Teachers in the era of artificial intelligence in vision of social role theory: Distress, attribution and clarification[J]. E-education research, 2022, 43(6): 18-24, 60.
[38]
董娜, 陈寞塬, 黄甫全, 等. AI教师身份何以证成: 来自新兴角色理论的回答[J]. 中国电化教育, 2025(5): 42-52.
DONG N, CHEN M Y, HUANG F Q, et al. How to prove the identity of AI teachers: An answer from the emerging role theory[J]. China educational technology, 2025(5): 42-52.
[39]
秦渝超, 刘革平, 许颖. 生成式人工智能如何重塑教学活动: 基于活动理论的模型构建与应用[J]. 中国远程教育, 2023(12): 34-45.
QIN Y C, LIU G P, XU Y. How generative AI reshapes teaching Activities Model construction and application based on activity theory[J]. Chinese journal of distance education, 2023(12): 34-45.
[40]
缪静敏, 沈苑, 汪琼. 生成式人工智能如何改变教学 : 来自高校教师的实践叙事[J]. 中国远程教育, 2025(5): 75-91.
MIAO J M, SHEN Y, WANG Q. How does GenAI transform Teaching Insights from faculty narratives[J]. Chinese journal of distance education, 2025(5): 75-91.
[41]
刘璐, 张新峰. 产学研协同的人工智能课程教学改革: 以中国科学院大学“深度学习”课程为例[J]. 高等工程教育研究, 2023(6): 73-77.
LIU L, ZHANG X F. Teaching reform of artificial intelligence course with industry university-research collaboration: Taking the "deep learning" course in university of Chinese academy of sciences as an example[J]. Research in higher education of engineering, 2023(6): 73-77.
[42]
付羽涵, 万倩. 人工智能时代知识产权人才培养模式的反思与重构[J]. 传播与版权, 2023(14): 96-99.
FU Y H, WAN Q. Reflection and reconstruction of intellectual property talents training mode in the era of artificial intelligence[J]. Chuanbo yu banquan, 2023(14): 96-99.
[43]
PAPPAS I O, WOODSIDE A G. Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing[J]. International journal of information management, 2021, 58: 102310.
[44]
VERWEIJ S. Set-theoretic methods for the social sciences: A guide to qualitative comparative analysis[J]. International journal of social research methodology, 2012, 16(2): 165-166.
[45]
GRECKHAMER T, FURNARI S, FISS P C, et al. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research[J]. Strategic organization, 2018, 16(4): 482-495.
[1] SHEN Hongjie, SHEN Hongwei, WANG Junli. Generative AI Empowering Information Literacy Education in Digital Libraries: Path Exploration, Challenge Analysis, and Response Strategies [J]. Journal of library and information science in agriculture, 2025, 37(7): 50-60.
[2] ZHAO Yajing. A Study of the Factors Influencing Participation Behavior among Users with Depression on User-Generated Content (UGC) Platforms [J]. Journal of library and information science in agriculture, 2025, 37(6): 70-86.
[3] SHI Xujie, YUAN Fan, LI Jia. Searching as Learning in the Context of Generative Artificial Intelligence: Technological Pathways, Behavioral Evolution, and Ethical Challenges [J]. Journal of library and information science in agriculture, 2025, 37(5): 40-57.
[4] CUI Shaojie, LIU Yanping. Impact of Digital Literacy on Rural Governance Effectiveness: Based on the Survey of 306 Rural Residents in Xia County, Shanxi Province [J]. Journal of library and information science in agriculture, 2025, 37(4): 39-50.
[5] LIU Jie, YUAN Yongxu, WU Juan. Strategies for Enhancing Intellectual Property Literacy Education in Academic Libraries from the Perspective of New Quality Productive Forces [J]. Journal of library and information science in agriculture, 2025, 37(3): 32-41.
[6] LI Xiao, QU Jiansheng. Influencing Factors of User Participation Intention of Crowdsourcing in Evidence Synthesis [J]. Journal of library and information science in agriculture, 2025, 37(3): 92-105.
[7] QIAO Jinhua, MA Xueyun. Risks and Regulations for Application of the LLaMA Model in University Future Learning Centers [J]. Journal of library and information science in agriculture, 2025, 37(2): 37-48.
[8] MA Ning, ZHANG Xiaoyi, LIU Qixuan. A Study of the Factors Influencing Information Literacy on Farmers' Willingness to Participate in E-Commerce: the Mediating Effects of Perceived Benefits and Perceived Risks, and the Moderating Effect of Government Support [J]. Journal of library and information science in agriculture, 2025, 37(2): 88-99.
[9] ZHANG Chaomin, LI Jingchen. Multi-Agent Behavior Strategy to Promote High-Quality Information Literacy Training for Farmers in the New Era [J]. Journal of library and information science in agriculture, 2025, 37(1): 75-85.
[10] LUO Guofeng, YI Tong, YAN Zhouzhou. Critical Information Literacy Education in University Libraries from the Perspective of AIGC Application [J]. Journal of library and information science in agriculture, 2025, 37(1): 47-58.
[11] Huimin HE. Reader Knowledge Construction in Public Library Information Literacy Education based on the MOA Model [J]. Journal of library and information science in agriculture, 2024, 36(9): 58-69.
[12] Fan YUAN, Jia LI. Opportunities, Challenges, and Future Directions for Generative Artificial Intelligence in Library Information Literacy Education: A Scoping Review [J]. Journal of library and information science in agriculture, 2024, 36(9): 44-57.
[13] Long HAN, Jincheng GUO, Yiting LU, Qun ZHOU. Factors Influencing User Information Adoption in Virtual Communities of Interest: A Study Based on SEM and fsQCA [J]. Journal of library and information science in agriculture, 2024, 36(8): 82-95.
[14] Chen MA, Jin LI, Zexin LI, Beibei FAN, Xian FENG. Evaluation and Influencing Factors of Farmers' Digital Literacy Levels in the Context of the Digital Countryside [J]. Journal of library and information science in agriculture, 2024, 36(7): 19-33.
[15] Ru WU, Ruhan ZHANG, Chenxing DAI, cheng LU. Intellectual Property Literacy Education in University Libraries Based on Innovative Talent Cultivation [J]. Journal of library and information science in agriculture, 2024, 36(6): 79-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!