中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (10): 4-22.doi: 10.13998/j.cnki.issn1002-1248.24-0716

    Next Articles

Behavioral Motivation and Influencing Factors of Graduate Students Using AIGC Tool: An Empirical Analysis Based on Questionnaire Survey

Yijia WAN1,2, Liping GU1,2()   

  1. 1. National Science Library, Chinese Academy of Sciences, Beijing 100190
    2. Department of Information Resource Management, School of Economic and Management, University of Chinese Academy of Sciences, Beijing 100190
  • Received:2024-09-05 Online:2024-10-05 Published:2025-03-12
  • Contact: Liping GU

Abstract:

[Purpose/Significance] To explore in depth the acceptance and usage habits of AIGC tools by graduate students in the process of academic research, and to promote the positive attention and application of emerging technologies by graduate students is one of the goals of library knowledge service and information literacy education. This paper aims to reveal the influence mechanism of internal and external factors on the use of AIGC tools by graduate students at the user level, clarify the behavioral motivation of graduate students to use AIGC tools to support learning and research, help libraries to design and promote AIGC services according to the actual situation, and promote the implementation of AIGC technology in knowledge services. [Method/Process] Based on the UTAUT2 model, considering related theories such as perceived value and the characteristics of AIGC tool and graduate student group, this study constructed the influencing factor model of graduate students' AIGC tool use behavior, and provided empirical evidence through questionnaire survey and structural equation model analysis. The survey respondents are graduate students in universities or research institutes. In this study, questionnaires were distributed to graduate students through social media platforms, enterprise Wechat contacts, email, etc., and the survey period was from July to August 2024. After the data collection, statistical software such as SPSS and SmartPLS was used to analyze all the valid data obtained, including descriptive statistics, reliability and validity test and structural equation model analysis. [Results/ [Conclusions] Functional value, use value and emotional value in the tool aspect, individual innovation in individual aspect and social influence in environmental aspect have significant positive effects on graduate students' willingness to use AIGC tools, and indirectly affect their use behavior. Facilitating conditions, such as network equipment, as supporting factors, also have a significant positive impact on graduate students' usage. It is suggested that AIGC tool developers and library service designers consider the functional advantages and convenience. On the one hand, it is suggested that they pay attention to the functional value of the tool, that is, the auxiliary role to the graduate study and scientific research; on the other hand, they consider whether the tool is design-friendly, easy to operate, with low technical threshold and easy to use on an ongoing basis. From a graduate education perspective, it is important to promote the deep integration of the tool use with one's own professional learning and research in order to realize the improvement of other qualities through information literacy. Meanwhile, strengthening students' innovative thinking and comprehensive ability training, and guiding AIGC tool application ability and scientific research thinking to promote each other are conducive to new technologies to truly support learning and scientific research, and ultimately achieve the goal of developing high-level innovative talents.

Key words: AIGC tool, use behavior, graduate student, individual innovation, use willingness, structural equation model, information behavior

CLC Number: 

  • G252

Fig.1

Model of factors influencing graduate students' use behavior of AIGC tools"

Table 1

Variable measurements and reference sources"

变量 题项编号 题项表述 参考来源
功能价值 GN1 AIGC工具为我提供了极其丰富且有价值的资源和帮助 VENKATESH等[37];ANDREWS等[50]
GN2 AIGC工具大大提高了我的学习和科研效率
GN3 AIGC工具提供了准确、全面、高质量的内容结果
GN4 对我来说,AIGC工具拥有远超其他工具的功能优势
使用价值 SY1 AIGC工具的界面设计十分友好,语言表述简单易懂 VENKATESH等[37];ANDREWS等[50]
SY2 AIGC工具的使用操作非常简便,无繁琐步骤
SY3 AIGC工具的使用方法很容易学习,技术门槛低
SY4 我能够持续使用AIGC工具获得并保存需要的内容
情感价值 QG1 使用AIGC工具令我有一种时尚感和优越感 MENON等[18];KIM等[52]
QG2 使用AIGC工具的过程具有娱乐性,令我心情愉悦
QG3 我对AIGC工具感到好奇,认为AIGC工具新鲜有趣
感知成本 CB1 使用AIGC工具额外增加了我的网络费用,例如购买VPN流量 KIM等[52]
CB2 我额外支付了AIGC工具本身的使用费用,例如购买账号
CB3 使用AIGC工具额外耗费了我的时间和精力
社会影响 SH1 周围很多人都在使用或推荐我使用AIGC工具 VENKATESH等[37];ANDREWS等[50];张海等[20]
SH2 组织机构的态度或要求,支持我使用AIGC工具
SH3 社交媒体、新闻报道等宣传推送形成了品牌效应,引导我使用AIGC工具
促进条件 CJ1 网络设备等外部条件支持我随时、方便地使用AIGC工具 VENKATESH等[37];MENON等[18]
CJ2 有大量教学培训以及他人帮助,使我能够解决使用AIGC工具时遇到的困难
CJ3 我的知识和能力水平足以支持我独立操作、使用AIGC工具
CJ4 目前已有大量的AIGC工具类产品供我使用
CJ5 我的工作强度和难度令我不得不使用AIGC工具
感知风险 FX1 我担心AIGC工具提供的帮助并不可靠,例如我对其信息真实性的认知有限 WU等[17];MENON等[18];张海等[20]
FX2 我担心AIGC工具会引发学术诚信、知识产权或信息泄露问题
FX3 我担心AIGC工具提供的内容在共享时引起争议或不被认可,影响与他人合作
FX4 我担心对AIGC工具产生依赖,自我思考和学习能力下降,长远来看不利于学习和科研
个体创新性 CX1 我往往较早地发现、关注和尝试新事物 ROGERS[48];张海等[20]
CX2 我善于捕捉和追赶科技产品和技术方面的潮流趋势
CX3 我愿意付出时间和精力去学习使用新兴科技产品和技术
行为意愿 YX1 我愿意持续关注AIGC工具 VENKATESH等[37];ANDREWS等[50];张海等[20]
YX2 未来我愿意(继续)使用AIGC工具
YX3 我很愿意向同学、朋友等推荐AIGC工具
YX4 我认为AIGC工具应该得到更多的宣传和推广
使用行为 XW1 我正在使用或曾经使用过AIGC工具 VENKATESH等[37]
XW2 在学习和科研中我经常使用AIGC工具
XW3 未来我会持续使用AIGC工具

Table 2

Sample demographics"

变量 类别描述 数量/个 比例/%
性别 200 38.99
313 61.01
年龄 25岁及以下 369 71.93
26~30岁 127 24.76
31~35岁 14 2.73
36岁及以上 3 0.58
培养层次 硕士研究生 386 75.24
博士研究生 127 24.76
学科类别 哲学 8 1.56
经济学 16 3.12
法学 27 5.26
教育学 19 3.70
文学 40 7.80
历史学 6 1.17
理学 84 16.37
工学 110 21.44
农学 6 1.17
医学 30 5.85
管理学 157 30.60
艺术学 5 0.97
交叉学科 5 0.97

Table 3

Descriptive statistics of the influence factor scale"

变量 测度项 平均值 标准差 偏度 峰度
功能价值 GN1 3.87 0.888 -0.775 0.809
GN2 3.96 0.918 -0.882 0.799
GN3 3.23 0.917 -0.055 -0.083
GN4 3.64 0.99 -0.547 -0.093
使用价值 SY1 3.83 0.885 -0.74 0.603
SY2 3.97 0.887 -1.023 1.35
SY3 3.9 0.96 -0.937 0.636
SY4 3.87 0.945 -0.827 0.598
情感价值 QG1 2.66 1.057 0.164 -0.572
QG2 3.07 1.045 -0.058 -0.55
QG3 3.83 0.911 -0.806 0.722
感知成本 CB1 3.23 1.31 -0.196 -1.099
CB2 3.07 1.39 -0.111 -1.285
CB3 2.56 0.994 0.303 -0.407
社会影响 SH1 3.67 0.978 -0.637 0.117
SH2 3.09 1.03 -0.23 -0.314
SH3 3.43 0.996 -0.535 -0.109
促进条件 CJ1 3.56 1.081 -0.764 0.003
CJ2 3.25 1.096 -0.319 -0.682
CJ3 3.86 0.926 -0.909 0.854
CJ4 3.47 1.038 -0.455 -0.354
感知风险 FX1 3.96 0.96 -0.969 0.898
FX2 3.99 0.946 -1.006 0.909
FX3 3.68 0.994 -0.578 -0.106
FX4 3.63 1.164 -0.611 -0.49
个体创新性 CX1 3.55 0.955 -0.351 -0.178
CX2 3.49 0.978 -0.285 -0.392
CX3 3.98 0.847 -0.845 0.868
行为意愿 YX1 4.29 0.716 -1.01 1.902
YX2 4.31 0.722 -1.035 1.663
YX3 4.09 0.838 -0.678 -0.031
YX4 3.98 0.881 -0.504 -0.279
使用行为 XW1 4.19 1.029 -1.549 1.998
XW2 3.69 1.157 -0.656 -0.409
XW3 4.22 0.807 -1.056 1.381

Table 4

Reliability test of the influence factor scale"

变量 测度项 修正后的项与总计相关性 删除项后的克隆巴赫 Alpha 整体克隆巴赫 Alpha
功能价值 GN1 0.753 0.788 0.853
GN2 0.75 0.788
GN3 0.594 0.853
GN4 0.685 0.817
使用价值 SY1 0.722 0.828 0.867
SY2 0.788 0.802
SY3 0.715 0.831
SY4 0.649 0.857
情感价值 QG1 0.559 0.656 0.737
QG2 0.642 0.549
QG3 0.493 0.727
感知成本 CB1 0.558 0.452 0.665
CB2 0.53 0.499
CB3 0.373 0.695
社会影响 SH1 0.518 0.537 0.673
SH2 0.484 0.581
SH3 0.456 0.616
促进条件 CJ1 0.563 0.695 0.757
CJ2 0.541 0.708
CJ3 0.573 0.693
CJ4 0.545 0.704
感知风险 FX1 0.414 0.737 0.736
FX2 0.638 0.618
FX3 0.636 0.614
FX4 0.456 0.729
个体创新性 CX1 0.761 0.763 0.855
CX2 0.802 0.722
CX3 0.631 0.881
行为意愿 YX1 0.699 0.842 0.868
YX2 0.784 0.81
YX3 0.796 0.8
YX4 0.632 0.874
使用行为 XW1 0.768 0.812 0.874
XW2 0.808 0.789
XW3 0.75 0.852

Table 5

KMO and Bartlett's test"

KMO取样适切性量数 0.931
巴特利特球形度检验 近似卡方 11 432.607
自由度 741
显著性 .000***

Table 6

Total variance interpretation"

成分 初始特征值 旋转载荷平方和
总计 方差百分比 累积% 总计 方差百分比 累积%
1 10.88 32.001 32.001 3.455 10.163 10.163
2 2.493 7.334 39.334 3.306 9.724 19.887
3 2.1 6.178 45.512 3.043 8.95 28.837
4 1.756 5.166 50.678 2.603 7.656 36.493
5 1.569 4.614 55.292 2.308 6.789 43.282
6 1.48 4.353 59.645 2.176 6.401 49.682
7 1.361 4.004 63.649 2.161 6.355 56.037
8 1.116 3.282 66.931 1.988 5.846 61.884
9 0.845 2.486 69.417 1.724 5.071 66.955
10 0.812 2.389 71.806 1.649 4.851 71.806
11 0.715 2.104 73.91
12 0.656 1.929 75.84
13 0.625 1.837 77.677
14 0.603 1.774 79.451
15 0.586 1.725 81.175
16 0.554 1.628 82.804
17 0.499 1.467 84.271
18 0.48 1.412 85.682
19 0.464 1.366 87.048
20 0.425 1.251 88.299
21 0.417 1.226 89.525
22 0.389 1.145 90.67
23 0.377 1.109 91.778
24 0.346 1.017 92.795
25 0.342 1.006 93.801
26 0.294 0.865 94.666
27 0.289 0.851 95.517
28 0.274 0.806 96.323
29 0.246 0.724 97.047
30 0.239 0.704 97.751
31 0.223 0.657 98.408
32 0.198 0.582 98.99
33 0.183 0.538 99.528
34 0.161 0.472 100

Table 7

Result of the convergent validity analysis"

变量 题项 标准化因子载荷 CR AVE
功能价值 GN1 0.889 0.900 0.694
GN2 0.891
GN3 0.712
GN4 0.828
使用价值 SY1 0.839 0.909 0.713
SY2 0.878
SY3 0.818
SY4 0.841
情感价值 QG1 0.742 0.843 0.642
QG2 0.797
QG3 0.860
感知成本 CB1 0.842 0.866 0.764
CB2 0.906
社会影响 SH1 0.864 0.817 0.600
SH2 0.748
SH3 0.703
促进条件 CJ1 0.748 0.846 0.578
CJ2 0.724
CJ3 0.818
CJ4 0.749
感知风险 FX1 0.661 0.843 0.646
FX2 0.918
FX3 0.811
个体创新性 CX1 0.871 0.910 0.771
CX2 0.900
CX3 0.863
行为意愿 YX1 0.846 0.914 0.727
YX2 0.898
YX3 0.898
YX4 0.760
使用行为 XW1 0.888 0.928 0.810
XW2 0.918
XW3 0.895

Table 8

Result of the discriminant validity analysis"

项目 CB CJ CX FX GN QG SH SY XW YX
CB 0.874
CJ 0.168 0.761
CX 0.199 0.445 0.878
FX 0.169 0.160 0.052 0.804
GN 0.282 0.528 0.396 0.047 0.833
QG 0.210 0.378 0.368 0.089 0.460 0.801
SH 0.230 0.553 0.218 0.148 0.462 0.281 0.775
SY 0.148 0.560 0.314 0.080 0.693 0.402 0.462 0.844
XW 0.267 0.525 0.411 0.083 0.646 0.342 0.474 0.606 0.900
YX 0.241 0.508 0.460 0.075 0.557 0.417 0.459 0.512 0.705 0.852

Table 9

Result of hypothesis validation"

假设内容 项目路径 路径系数 T P 结果
H1:研究生对AIGC工具功能价值的认识将正向影响其对AIGC工具的行为意愿 GN -> YX 0.198 3.642 0.000 支持
H2:研究生对AIGC工具使用价值的认识将正向影响其对AIGC工具的行为意愿 SY -> YX 0.155 3.067 0.002 支持
H3:研究生对AIGC工具情感价值的认识将正向影响其对AIGC工具的行为意愿 QG -> YX 0.110 2.415 0.016 支持
H4:研究生对AIGC工具的感知成本将负向影响其对AIGC工具的行为意愿 CB -> YX 0.046 1.305 0.192 不支持
H5:社会影响将正向影响研究生对AIGC工具的行为意愿 SH -> YX 0.203 4.514 0.000 支持
H6:研究生的个体创新性将正向影响其对AIGC工具的行为意愿 CX -> YX 0.239 6.558 0.000 支持
H7:研究生对AIGC工具的感知风险将负向影响其对AIGC工具的行为意愿 FX -> YX -0.007 0.166 0.868 不支持
H8:促进条件将正向影响研究生对AIGC工具的使用行为 CJ -> XW 0.226 4.837 0.000 支持
H9:研究生对AIGC工具的行为意愿将正向影响其对AIGC工具的使用行为 YX -> XW 0.590 14.476 0.000 支持

Fig.2

Path coefficient diagram of the model"

Table 10

Indirect effect of the structural equation model"

项目路径 路径系数 T P 中介效果
CX -> YX -> XW 0.141 5.87 0.000 存在
FX -> YX -> XW -0.004 0.165 0.869 不存在
GN -> YX -> XW 0.117 3.439 0.001 存在
QG -> YX -> XW 0.065 2.4 0.016 存在
SH -> YX -> XW 0.12 4.328 0.000 存在
SY -> YX -> XW 0.092 2.861 0.004 存在
CB -> YX -> XW 0.027 1.283 0.200 不存在
1
张静蓓, 虞晨琳, 蔡迎春. 人工智能素养教育: 全球进展与展望[J]. 图书情报知识, 2024, 41(3): 15-26.
ZHANG J B, YU C L, CAI Y C. Artificial intelligence literacy education: Global progress and prospect[J]. Library and information knowledge, 2024, 41(3): 15-26.
2
星火科研助手[EB/OL]. [2024-08-16].
Xinghuo scientific research assistant[EB/OL]. [2024-08-16].
3
Scopus AI : content Trusted. Powered by responsible AI[EB/OL]. [2024-08-16].
4
知网AI智能写作[EB/OL]. [2024-08-16].
CNKI AI intelligent writing[EB/OL]. [2024-08-16].
5
VENKATESH V, DAVIS F D. A model of the antecedents of perceived ease of use: Development and test[J]. Decision sciences, 1996, 27(3): 451-481.
6
ZHAI X M. ChatGPT for next generation science learning[J]. XRDS: Crossroads, the ACM magazine for students, 2023, 29(3): 42-46.
7
央视网. 言谆意重, 习近平寄语广大青年科技人才[EB/OL]. [2024-08-24].
8
人民日报. 习近平在科学家座谈会上的讲话[EB/OL]. [2024-08-24].
9
马阅欢, 方佳明, 杨慧颖, 等. 机器的觉醒: 生成式AI溯源、演进与展望[J]. 南开管理评论, 2024, 27(4): 66-77.
MA Y H, FANG J M, YANG H Y, et al. The rising of the machine: Generative AI traceability, evolution, and future prospects[J]. Nankai business review, 2024, 27(4): 66-77.
10
朱禹, 叶继元. 人工智能生成内容(AIGC)研究综述: 国际进展与热点议题[J]. 信息与管理研究, 2024, 9(4): 13-27.
ZHU Y, YE J Y. A review of artificial intelligence generated content(AIGC): International progress and research agenda[J]. Journal of information and management, 2024, 9(4): 13-27.
11
中国信息通信研究院. 人工智能生成内容(AIGC)白皮书(2022年)[EB/OL]. [2024-08-16].
12
孙蒙鸽, 韩涛, 王燕鹏, 等. GPT技术变革对基础科学研究的影响分析[J]. 中国科学院院刊, 2023, 38(8): 1212-1224.
SUN M G, HAN T, WANG Y P, et al. Impact analysis of GPT technology revolution on fundamental scientific research[J]. Bulletin of Chinese academy of sciences, 2023, 38(8): 1212-1224.
13
骆飞, 马雨璇. 人工智能生成内容对学术生态的影响与应对: 基于ChatGPT的讨论与分析[J]. 现代教育技术, 2023, 33(6): 15-25.
LUO F, MA Y X. The impact of artificial intelligence generated content on academic ecology and countermeaures: Discussion and analysis based on ChatGPT[J]. Modern educational technology, 2023, 33(6): 15-25.
14
游俊哲. ChatGPT类生成式人工智能在科研场景中的应用风险与控制措施[J]. 情报理论与实践, 2023, 46(6): 24-32.
YOU J Z. Risks and control measures of ChatGPT-like generative artificial intelligence in research[J]. Information studies: Theory & application, 2023, 46(6): 24-32.
15
HOLDEN THORP H. ChatGPT is fun, but not an author[J]. Science, 2023, 379(6630): 313.
16
SOHN K, KWON O. Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products[J]. Telematics and informatics, 2020, 47: 101324.
17
WU W T, ZHANG B, LI S T, et al. Exploring factors of the willingness to accept AI-assisted learning environments: An empirical investigation based on the UTAUT model and perceived risk theory[J]. Frontiers in psychology, 2022, 13: 870777.
18
MENON D, SHILPA K. "Chatting with ChatGPT": Analyzing the factors influencing users' intention to use the open AI's ChatGPT using the UTAUT model[J]. Heliyon, 2023, 9(11): e20962.
19
FOROUGHI B, SENALI M G, IRANMANESH M, et al. Determinants of intention to use ChatGPT for educational purposes: Findings from PLS-SEM and fsQCA[J]. International journal of human–computer interaction, 2024, 40(17): 4501-4520.
20
张海, 刘畅, 王东波, 等. ChatGPT用户使用意愿影响因素研究[J]. 情报理论与实践, 2023, 46(4): 15-22.
ZHANG H, LIU C, WANG D B, et al. A study on factors influencing the willingness to use ChatGPT[J]. Information studies: Theory & application, 2023, 46(04): 15-22.
21
任海芝, 吴彦瑾. 科研用户生成式信息搜索行为研究: 以ChatGPT为例[J]. 大学图书情报学刊, 2024, 42(1): 3-14.
REN H Z, WU Y J. A study of generative information search behaviour of scientific research users: ChatGPT as an example[J]. Journal of academic library and information science, 2024, 42(1): 3-14.
22
ZHU W J, HUANG L, ZHOU X N, et al. Could AI ethical anxiety, perceived ethical risks and ethical awareness about AI influence university students' use of generative AI products? An ethical perspective[J]. International journal of human-computer interaction, 2024: 1-23.
23
ZHOU T, LI S T. Understanding user switch of information seeking: From search engines to generative AI[J]. Journal of librarianship and information science, 2024: 09610006241244800.
24
LIU G X, MA C J. Measuring EFL learners' use of ChatGPT in informal digital learning of English based on the technology acceptance model[J]. Innovation in language learning and teaching, 2024, 18(2): 125-138.
25
LI W. A study on factors influencing designers' behavioral intention in using AI-generated content for assisted design: Perceived anxiety, perceived risk, and UTAUT[J]. International journal of human-computer interaction, 2024(3): 1-14.
26
YANG X W, DING J J, CHEN H B, et al. Factors affecting the use of artificial intelligence generated content by subject librarians: A qualitative study[J]. Heliyon, 2024, 10(8): e29584.
27
GUO W M, GUO Q, YU H W, et al. Optical fiber immunosensor based on graphene oxide(GO) and biotin–streptavidin(SA) signal amplification system for rapid and sensitive detection of 17 [beta]-estradiol(E 2)[C]//Advanced Sensor Systems and Applications XII. China: SPIE, 2022: 12321:123211B.
28
HERVIEUX S, WHEATLEY A. Perceptions of artificial intelligence: A survey of academic librarians in Canada and the United States[J]. The journal of academic librarianship, 2021, 47(1): 102270.
29
段荟, 张海, 孔晔晗. AIGC应用平台用户持续使用行为影响因素研究[J]. 图书馆工作与研究, 2024(6): 21-31.
DUAN H, ZHANG H, KONG Y H. Research on the influencing factors of users' sustained use behavior of AIGC application platform[J]. Library work and study, 2024(6): 21-31.
30
张玥, 李青宇, 刘雨琪, 等. 组态视角下AIGC应用平台用户中辍行为影响因素研究[J]. 情报理论与实践, 2024, 47(3): 130-137, 148.
ZHANG Y, LI Q Y, LIU Y Q, et al. A study on discontinuance behavior in the AIGC application platform based on the perspective of configuration[J]. 情报理论与实践, 2024, 47(3): 130-137, 148.
31
周涛, 张春雷, 邓胜利. 基于C-A-C的生成式AI用户间歇性中辍行为研究[J/OL]. 现代情报, 2024: 1-17.
ZHOU T, ZHANG C L, DENG S L. Research on intermittent quitting behavior of generative AI users based on C-A-C[J/OL]. China industrial economics, 2024: 1-17.
32
ELGAMMAL A, LIU B, ELHOSEINY M, et al. CAN: Creative adversarial networks, generating "art" by learning about styles and deviating from style norms[C]. International Conference on Innovative Computing and Cloud Computing, 2017.
33
TAO W, GAO S, YUAN Y L. Boundary crossing: An experimental study of individual perceptions toward AIGC[J]. Frontiers in psychology, 2023, 14: 1185880.
34
NGUYEN A, HONG Y, DANG B, et al. Human-AI collaboration patterns in AI-assisted academic writing[J]. Studies in higher education, 2024, 49(5): 847-864.
35
YE J H, ZHANG M M, NONG W, et al. The relationship between inert thinking and ChatGPT dependence: An I-PACE model perspective[J]. Education and information technologies, 2024(8): 1-25.
36
FLETCHER R, NIELSEN R K. What does the public in six countries think of generative AI in news?[EB/OL]. [2024-08-29].
37
VENKATESH V, MORRIS M G, DAVIS G B, et al. User acceptance of information technology: Toward a unified view[J]. MIS quarterly, 2003, 27(3): 425-478.
38
VENKATESH V, THONG J Y L, XU X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology[J]. MIS quarterly, 2012, 36(1): 157-178.
39
文鹏, 蔡瑞. 微信用户使用意愿影响因素研究[J]. 情报杂志, 2014, 33(6): 156-161.
WEN P, CAI R. Study on impacting factors of WeChat users' intention[J]. Journal of intelligence, 2014, 33(6): 156-161.
40
张思, 刘清堂, 黄景修, 等. 中小学教师使用网络学习空间影响因素研究: 基于UTAUT模型的调查[J]. 中国电化教育, 2016(3): 99-106.
ZHANG S, LIU Q T, HUANG J X, et al. A study of the factors that affect web-based learning places use: A UTAUT model analysis[J]. China educational technology, 2016(3): 99-106.
41
王晰巍, 刘伟利, 贾沣琦, 等. 网络直播APP使用行为影响因素模型及实证研究[J]. 图书情报工作, 2020, 64(5): 22-31.
WANG X W, LIU W L, JIA F Q, et al. An empirical study on influencing factors of live-streaming APP using behavior[J]. Library and information service, 2020, 64(5): 22-31.
42
ZEITHAML V A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence[J]. Journal of marketing, 1988, 52(3): 2.
43
BAUER R A. Consumer behavior as risk taking[C]. Chicago, Illinois: Proceedings of the 43rd National Conference of the American Marketing Assocation, 1960.
44
PAVLOU P A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model[J]. International journal of electronic commerce, 2003, 7(3): 101-134.
45
李旭光, 胡奕, 王曼, 等. 人工智能生成内容研究综述: 应用、风险与治理[J]. 图书情报工作, 2024, 68(17): 136-149.
LI X G, HU Y, WANG M, et al. A review of AI-generated content research: Applications, risks, and governance[J]. Library and information service, 2024, 68(17): 136-149.
46
毛太田, 汤淦, 马家伟, 等. 人工智能生成内容(AIGC)用户采纳意愿影响因素识别研究——以ChatGPT为例[J]. 情报科学, 2024, 42(7): 126-136.
MAO T T, TANG G, MA J W, et al. Identifying factors influencing user adoption intention of Artificial Intelligence Generated Content (AIGC) - A case study of ChatGPT[J]. Information science, 2024, 42(7): 126-136.
47
MIDGLEY D F, DOWLING G R. Innovativeness: The concept and its measurement[J]. Journal of consumer research, 1978, 4(4): 229-242.
48
ROGERS E M. Diffusion of innovations[M]. 5th ed. New York: Free Press, 2003.
49
SHETH J N, NEWMAN B I, GROSS B L. Why we buy what we buy: A theory of consumption values[J]. Journal of business research, 1991, 22(2): 159-170.
50
ANDREWS J E, WARD H, YOON J. UTAUT as a model for understanding intention to adopt AI and related technologies among librarians[J]. The journal of academic librarianship, 2021, 47(6): 102437.
51
刘刚, 拱晓波. 顾客感知价值构成型测量模型的构建[J]. 统计与决策, 2007, 23(22): 131-133.
LIU G, GONG X B. Construction of constitutive measurement model of customer perceived value[J]. Statistics and decision, 2007, 23(22): 131-133.
52
KIM H W, CHAN H C, GUPTA S. Value-based adoption of mobile Internet: An empirical investigation[J]. Decision support systems, 2007, 43(1): 111-126.
FISHBEIN M, AJZEN I. Belief, attitude, intention, and behavior: an introduction to theory and research[M]. Reading, Mass.: Addison-Wesley Pub. Co., 1975.
53
AJZEN I. The theory of planned behavior[J]. Organizational behavior and human decision processes, 1991, 50(2): 179-211.
54
DAVIS F D. Perceived usefulness, perceived ease of use, and user acceptance of information technology[J]. MIS quarterly, 1989, 13(3): 319-340.
55
DRUCKER P F. The practice of management[M]. [1st ed.]. New York: Harper, 1954.
56
CHIU T K F. The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney[J]. Interactive learning environments, 2023, 32(10): 6187-6203.
57
VENKATESH V. Adoption and use of AI tools: A research agenda grounded in UTAUT[J]. Annals of operations research, 2022, 308(1): 641-652.
58
THOMPSON R L, HIGGINS C A, HOWELL J M. Personal computing: Toward a conceptual model of utilization[J]. MIS quarterly, 1991, 15(1): 125-143.
59
吕游. AIGC技术在图书馆服务创新中的应用与展望[J]. 图书馆工作与研究, 2024(3): 67-72.
LV Y. Application and outlook of AIGC technology in library service innovation[J]. Library work and study, 2024(3): 67-72.
60
储节旺, 罗怡帆. 人工智能生成内容赋能图书馆知识服务的路径研究[J]. 情报理论与实践, 2024, 47(8): 34-42.
CHU J W, LUO Y F. A study on the path of artificial intelligence generated content empowering library knowledge services[J]. Information studies: Theory & application, 2024, 47(8): 34-42.
61
汪聪, 张春红, 高楠,等. 面向人工智能生成内容时代的图书馆服务适应与创新[J]. 情报理论与实践, 2024, 47(7): 17-24.
WANG C, ZHANG C H, GAO N, et al. Library service adaptation and innovation in the era of artificial intelligence generated content[J]. Information studies: Theory & application, 2024, 47(7): 17-24.
62
刘彩娥, 韩丽风. AIGC背景下高校信息素养教育的发展[J]. 大学图书馆学报, 2024, 42(2): 46-51.
LIU C E, HAN L F. The development of information literacy education in colleges in the context of AIGC[J]. Journal of academic libraries, 2024, 42(2): 46-51.
63
邱泽奇. 认知域: 从习以为常到人机互生[J]. 学术前沿, 2023(11): 12-27.
QIU Z Q. Cognitive domain: From everyday routine to man-machine symbiosis[J]. Frontiers, 2023(11): 12-27.
64
汪霞, 卞清, 孙俊华. 论学术学位研究生课程体系建设[J]. 学位与研究生教育, 2015(10): 30-34.
WANG X, BIAN Q, SUN J H. On the construction of the curriculum system for academic degree graduate students[J]. Academic degrees & graduate education, 2015(10): 30-34.
[1] Xuemei LUO, Yuzhe LIN. Graduate Student Digital Literacy Promotion Pathway Driven by AIGC [J]. Journal of Library and Information Science in Agriculture, 2024, 36(9): 70-77.
[2] Long HAN, Jincheng GUO, Yiting LU, Qun ZHOU. Factors Influencing User Information Adoption in Virtual Communities of Interest: A Study Based on SEM and fsQCA [J]. Journal of Library and Information Science in Agriculture, 2024, 36(8): 82-95.
[3] Guowei GAO, Shanshan ZHANG, Jialan YU. A Review of Health Information Behaviors of Older People from the Perspective of Topic Differentiation [J]. Journal of Library and Information Science in Agriculture, 2024, 36(7): 34-49.
[4] Liqin YAO, Hai ZHANG. Model Construction and Empirical Research on the Influencing Factors of AIGC User Dropout Behavior [J]. Journal of Library and Information Science in Agriculture, 2024, 36(5): 79-92.
[5] Chunling GAO, Liyuan JIANG. Elderly People's Online Health Information Seeking Behavior Based on Evolutionary Dynamics [J]. Journal of Library and Information Science in Agriculture, 2024, 36(5): 65-78.
[6] LIU Yang, LYU Shuyue, LI Ruojun. Concept, Task, and Application of Social Robots in Information Behavior Research [J]. Journal of Library and Information Science in Agriculture, 2024, 36(3): 4-20.
[7] ZHOU Xin. Machine Functionalism and the Digital-Intelligence Divide: Evolutionary Pathways, Generative Logic and Regulatory Strategies [J]. Journal of Library and Information Science in Agriculture, 2024, 36(3): 59-71.
[8] SHI Yanqing, LI Lu, SHI Qin. Impact of User Heterogeneity on Knowledge Collaboration Effectiveness from a Network Structure Perspective [J]. Journal of Library and Information Science in Agriculture, 2024, 36(3): 72-82.
[9] WANG Yueying. Exploring the Causes of Low Health Information Literacy Among Rural Middle-Aged and Elderly Adults and its Improvement Strategies [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 81-93.
[10] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 36-50.
[11] Zheng WANG, Miao ZHUANG, Yudi ZHANG, Yaqi ZHANG. Factors Influencing Online Health Information Acquisition Behavior of Rural Elderly Groups in Western China: A Field Study from the Guanzhong Region of Shaanxi Province [J]. Journal of Library and Information Science in Agriculture, 2024, 36(10): 23-37.
[12] WU Yiwei, WEN Tingxiao. Effects of Public Online Health Information Search on Offline Medical Care Seeking Behavior [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 30-42.
[13] XIE Yanjie. Review of Public Library Services to the Elderly in China [J]. Journal of Library and Information Science in Agriculture, 2023, 35(7): 18-26.
[14] LI Jing. Causes of Intergenerational Conflict Heath Information Behavior and Its Mechanism in Social Control in the Context of Public Health Emergencies [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 74-88.
[15] XIAO Yun, XU Huanhuan, XIAO Yayuan, ZHAO Youlin, PANG Hangyuan. User Preference Mining in Digital Community Based on CLV Preference Mining Model [J]. Journal of Library and Information Science in Agriculture, 2023, 35(2): 45-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!