[1] WANG J L, FAN Y, ZHANG H, et al.Technology hotspot tracking: Topic discovery and evolution of China's blockchain patents based on a dynamic LDA model[J]. Symmetry, 2021, 13(3): 415. [2] WANG Q.A bibliometric model for identifying emerging research topics[J]. Journal of the association for information science and technology, 2018, 69(2): 290-304. [3] 田红云, 王铭瑟, 田丰. 跨界颠覆性创新的早期识别方法及实证检验[J]. 情报杂志, 2024, 43(5): 87-96, 105. TIAN H Y, WANG M S, TIAN F.Early identification methods and empirical tests of cross-border disruptive innovation[J]. Journal of intelligence, 2024, 43(5): 87-96, 105. [4] 赵磊, 章成志. 基于不同内容层面的特定领域研究主题差异分析研究[J]. 农业图书情报学报, 2021, 33(5): 14-27. ZHAO L, ZHANG C Z.Difference analysis of research topics in a specific domain based on different content levels[J]. Journal of library and information science in agriculture, 2021, 33(5): 14-27. [5] 宋凯, 朱彦君. 专利前沿技术主题识别及趋势预测方法——以人工智能领域为例[J]. 情报杂志, 2021, 40(1): 33-38. SONG K, ZHU Y J.Patent frontier technology topic identification and trend prediction: A case analysis of artificial intelligence[J]. Journal of intelligence, 2021, 40(1): 33-38. [6] 吕鲲, 项旻昊, 靖继鹏. 基于LDA2Vec和DTM模型的颠覆性技术主题识别研究——以能源科技领域为例[J]. 图书情报工作, 2023, 67(12): 89-102. LV K, XIANG M H, JING J P.Identification of disruptive technology topics based on LDA2Vec and DTM models: A case study in the energy technology field[J]. Library and information service, 2023, 67(12): 89-102. [7] CHARMANAS K, MITTAS N, ANGELIS L.Topic and influence analysis on technological patents related to security vulnerabilities[J]. Computers & security, 2023, 128: 103128. [8] CHOI H, WOO J.Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model[J]. Applied energy, 2022, 313: 118898. [9] WANG J, HSU C C.A topic-based patent analytics approach for exploring technological trends in smart manufacturing[J]. Journal of manufacturing technology management, 2020, 32(1): 110-135. [10] 王康, 陈悦. 基于异质性专利的颠覆性技术早期识别研究[J]. 科学学研究, 2023, 41(8): 1364-1375. WANG K, CHEN Y.Research on early identification of disruptive technologies based on heterogeneous patents[J]. Studies in science of science, 2023, 41(8): 1364-1375. [11] LI X, WEN Y, JIANG J J, et al.Identifying potential breakthrough research: A machine learning method using scientific papers and Twitter data[J]. Technological forecasting and social change, 2022, 184: 122042. [12] KUMARI R, JEONG J Y, LEE B H, et al.Topic modelling and social network analysis of publications and patents in humanoid robot technology[J]. Journal of information science, 2021, 47(5): 658-676. [13] GEUM Y, KIM M.How to identify promising chances for technological innovation: Keygraph-based patent analysis[J]. Advanced engineering informatics, 2020, 46: 101155. [14] ZHONG Y X.A theory of semantic information[J]. China communications, 2017, 14(1): 1-17. [15] 马永红, 孔令凯, 林超然, 等. 基于专利挖掘的关键共性技术识别研究[J]. 情报学报, 2020, 39(10): 1093-1103. MA Y H, KONG L K, LIN C R, et al.Key generic technology identification based on patent mining[J]. Journal of the China society for scientific and technical information, 2020, 39(10): 1093-1103. [16] 王山, 谭宗颖. 关键核心技术识别赋能新质生产力发展:内在逻辑、现实挑战与实践路径[J]. 农业图书情报学报, 2024, 36(2): 26-35. WANG S, TAN Z Y.Identification of key core technologies enables the development of new quality productive forces[J]. Journal of li-brary and information science in agriculture, 2024, 36(2): 26-35. [17] YU Z G, JOHNSON T R, KAVULURU R.Phrase based topic modeling for semantic information processing in biomedicine[C]//2013 12th International Conference on Machine Learning and Applications. Piscataway, New Jersey: IEEE, 2013: 440-445. [18] 张琴, 张智雄. 基于PhraseLDA模型的主题短语挖掘方法研究[J]. 图书情报工作, 2017, 61(8): 120-125. ZHANG Q, ZHANG Z X.Topical phrase mining based on the PhraseLDA model[J]. Library and information service, 2017, 61(8): 120-125. [19] MCCLELLAND D C.Testing for competence rather than for "intelligence."[J]. American psychologist, 1973, 28(1): 1-14. [20] 吴晓凤, 高峰, 蔡国瑞. 正反冰山模型与知识晶炼理论的融合发展[J]. 图书馆理论与实践, 2019(2): 37-42. WU X F, GAO F, CAI G R.The integration development of positive-negative iceberg model and knowledge crystallization theory[J]. Library theory and practice, 2019(2): 37-42. [21] 申媛媛, 邬锦雯, 李丹. 基于熵权法的数字乡村微观测度模型研究[J]. 农业图书情报学报, 2020, 32(4): 68-76. SHEN Y Y, WU J W, LI D.Research on digital village micro-observation model based on entropy weight method[J]. Journal of library and information science in agriculture, 2020, 32(4): 68-76. [22] 王岩, 王会丽. 高校专利申请前评估的理念与实践问题探讨[J]. 中国高校科技, 2022(10): 75-83. WANG Y, WANG H L.Discussion on the concept and practice of patent pre-application evaluation in colleges and universities[J]. China university science & technology, 2022(10): 75-83. [23] 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. LUO S P, KOU C C, JIN J, et al.Disruptive technology prediction based on outlier patents: Traditional Chinese medicine patents as an example[J]. Information studies: Theory & application, 2019, 42(7): 165-170. [24] FREEMAN L C.Centrality in social networks conceptual clarification[J]. Social networks, 1978, 1(3): 215-239. [25] 李宜展,孔晔晗,李泽霞.可拓理论在技术演化与预测中的应用潜力[J/OL].现代情报:1-25[2024-06-18].http://kns.cnki.net/kcms/detail/22.1182.G3.20240522.1732.002.html. LI Y Z, KONG Y H, LI Z X. The potential application of the theory of fuzzy sets in technological evolution and prediction[J/OL]. Journal of modern information:1-25[2024-06-18].http://kns.cnki.net/kcms/detail/22.1182.G3.20240522.1732.002.html. [26] 郑航, 叶阿忠. 面向高新技术领域的跨国专利质量测度研究[J]. 科技进步与对策, 2023: 1-10. ZHENG H, YE A Z.Measurement of transnational patent quality in the high-tech fields[J]. Science & technology progress and polic, 2023: 1-10. [27] 冉从敬, 李旺, 胡启彪, 等. 基于机器学习的成本法在专利价值评估中的应用研究——以“新能源汽车”为例[J]. 现代情报, 2024, 44(5): 140-152. RAN C J, LI W, HU Q B, et al.Research on the application of machine learning-based cost method in patent value assessment - Taking "new energy vehicle" as the case[J]. Journal of modern infor-mation, 2024, 44(5): 140-152. [28] LEE C Y, KWON O, KIM M, et al.Early identification of emerging technologies: A machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127: 291-303. [29] HAN S Q, HUANG H L, HUANG X H, et al.Core patent forecasting based on graph neural networks with an application in stock markets[J]. Technology analysis & strategic management, 2022: 1-15. [30] CHUNG P, SOHN S Y.Early detection of valuable patents using a deep learning model: Case of semiconductor industry[J]. Technological forecasting and social change, 2020, 158: 120146. [31] 马建红, 姬帅, 刘硕. 面向专利的主题短语提取[J]. 计算机工程与设计, 2019, 40(5): 1365-1369, 1382. MA J H, JI S, LIU S.Topical phrase mining for patent[J]. Computer engineering and design, 2019, 40(5): 1365-1369, 1382. [32] EL-KISHKY A, SONG Y L, WANG C, et al.Scalable topical phrase mining from text corpora[J]. Proceedings of the VLDB endowment, 2014, 8(3): 305-316. [33] 刘俊婉, 龙志昕, 王菲菲. 基于LDA主题模型与链路预测的新兴主题关联机会发现研究[J]. 数据分析与知识发现, 2019, 3(1): 104-117. LIU J W, LONG Z X, WANG F F.Finding collaboration opportunities from emerging issues with LDA topic model and link prediction[J]. Data analysis and knowledge discovery, 2019, 3(1): 104-117. [34] 郭剑明, 王婧怡, 袁润. 基于网络快照的核心专利预测方法研究[J]. 情报理论与实践, 2024: 1-11. GUO J M, WANG J Y, YUAN R.Research on core patent predic-tion method based on network snapshot[J]. Information studies: Theory & application, 2024: 1-11. [35] CHANDRA M A, BEDI S S.Survey on SVM and their application in imageclassification[J]. International journal of information tech-nology, 2021, 13(5): 1-11. [36] CHARBUTY B, ABDULAZEEZ A.Classification based on decision tree algorithm for machine learning[J]. Journal of applied science and technology trends, 2021, 2(1): 20-28. [37] RYMARCZYK T, KOZ OWSKI E, K OSOWSKI G, et al. Logistic regression for machine learning in process tomography[J]. Sensors, 2019, 19(15): 3400. [38] BREIMAN L.Random forests[C]//Machine learning for signal pro-cessing 17. Proceedings of the 2007 IEEE signal processing society workshop, 2001, 45: 5-32. [39] FREUND Y, SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119-139. [40] THAPA S, MISHRA J, ARORA N, et al.Microbial cellulolytic en-zymes: Diversity and biotechnology with reference to lignocellulosic biomass degradation[J]. Reviews in environmental science and bio/technology, 2020, 19(3): 621-648. [41] 孙慧敏, 邹丽花, 郑兆娟, 等. 应用生物技术降解木质纤维素水解液中呋喃醛[J]. 生物工程学报, 2021, 37(2): 473-485. SUN H M, ZOU L H, ZHENG Z J, et al.Biodegradation of furan aldehydes in lignocellulose hydrolysates[J]. Chinese journal of biotechnology, 2021, 37(2): 473-485. [42] 刘婷, 赵亚娟. 技术机会识别研究综述与展望[J]. 农业图书情报学报, 2023, 35(7): 4-17. LIU T, ZHAO Y J.Review and prospect of research on technology opportunity identification[J]. Journal of library and information sci-ence in agriculture, 2023, 35(7): 4-17. [43] MANN G S, MIMNO D, MCCALLUM A.Bibliometric impact mea-sures leveraging topic analysis[C]//Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries. New York: ACM, 2006: 65-74. [44] JOSHI A, KALE S, CHANDEL S, et al.Likert scale: Explored and explained[J]. British journal of applied science & technology, 2015, 7(4): 396-403. |