[1] 孙坦, 丁培, 黄永文, 等. 文本挖掘技术在农业知识服务中的应用述评[J]. 农业图书情报学报, 2021, 33(1): 4-16. SUN T, DING P, HUANG Y W, et al.Review on the application and development strategies of text mining in agriculture knowledge services[J]. Journal of library and information science in agriculture, 2021, 33(1): 4-16. [2] 曹树金, 吴育冰, 韦景竹, 等. 知识图谱研究的脉络、流派与趋势——基于SSCI与CSSCI期刊论文的计量与可视化[J]. 中国图书馆学报, 2015, 41(5): 16-34. CAO S J, WU Y B, WEI J Z, et al.History, schools and trend in knowledge map: Investigation and visualization based on SSCI and CSSCI[J]. Journal of library science in China, 2015, 41(5): 16-34. [3] 徐有为, 张宏军, 程恺, 等. 知识图谱嵌入研究综述[J]. 计算机工程与应用, 2022, 58(9): 30-50. XU Y W, ZHANG H J, CHENG K, et al.Comprehensive survey on knowledge graph embedding[J]. Computer engineering and applications, 2022, 58(9): 30-50. [4] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. XU Z L, SHENG Y P, HE L R, et al.Review on knowledge graph techniques[J]. Journal of university of electronic science and technology of China, 2016, 45(4): 589-606. [5] ZHOU C, LIU Y Q, LIU X F, et al.Scalable graph embedding for asymmetric proximity[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 456-545. [6] LI E Z, LE Z Y.Frustrated random walks: A faster algorithm to evaluate node distances on connected and undirected graphs[J]. Physical review E, 2020, 102: 052135. [7] QIAO L, JIANG L, HAN M, et al.Hierarchical random walk infer-ence in knowledge graphs[C]// The 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa, Italy: Association for Computing Machinery, 2016. [8] 赵卓翔, 王轶彤, 田家堂, 等. 社会网络中基于标签传播的社区发现新算法[J]. 计算机研究与发展, 2011, 48(S3): 8-15. ZHAO Z X, WANG Y T, TIAN J T, et al.A novel algorithm for com-munity discovery in social networks based on label propagation[J]. Journal of computer research and development, 2011, 48(S3): 8-15. [9] 孙光福, 吴乐, 刘淇, 等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013, 24(11): 2721-2733. SUN G F, WU L, LIU Q, et al.Recommendations based on collaborative filtering by exploiting sequential behaviors[J]. Journal of software, 2013, 24(11): 2721-2733. [10] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2013: 2787-2795. [11] FENG J, ZHOU M T, HAO Y, et al. Knowlege graph embedding by flexible translation[J]. arXiv:1505.05253, 2015. [12] XIAO H, HUANG M L, HAO Y, et al. TransA: An adaptive approach for knowledge graph embedding[J]. arXiv:1509.05490, 2015. [13] SUN Z Q, DENG Z H, NIE J Y, et al.RotatE: Knowledge graph embedding by relational rotation in complex space[J]. arXiv: 1902.10197, 2019. [14] NICKEL M, TRESP V, KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]// Proceedings of the 28th International Conference on International Conference on Machine Learning. New York: ACM, 2011: 809-816. [15] YANG B, YUH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv preprint arXiv:1412.6575, 2014. [16] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al.Modeling relational data with graph convolutional networks[C]//European semantic web conference. Cham: Springer, 2018: 593-607. [17] SHANG C, TANG Y, HUANG J, et al.End-to-end structure-aware convolutional networks for knowledge base completion[J]. Proceedings of the AAAI conference on artificial intelligence AAAI conference on artificial intelligence, 2019, 33: 3060-3067. [18] MITCHELL T, FREDKIN E.Never-ending language learning[C]// 2014 IEEE International Conference on Big Data(Big Data). Piscataway, New Jersey: IEEE, 2015: 1. [19] DONG X, GABRILOVICH E, HEITZ G, et al.Knowledge vault: A web-scale approach to probabilistic knowledge fusion[C]// Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, USA: ACM, 2014. [20] 李小凤, 肖帅, 刘希艳, 等. 我国农业类国家标准分类检索浅析[J]. 中国标准化, 2020(7): 67-71, 75. LI X F, XIAO S, LIU X Y, et al.A brief analysis of the classification retrieval of Chinese national standards for agriculture[J]. China standardization, 2020(7): 67-71, 75. [21] CHEN H C, PEROZZI B, HU Y F, et al.HARP: Hierarchical representation learning for networks[C]//Proceedings of the AAAI conference on artificial intelligence. 2018, 32(1): 336-341. [22] TRAAG V A, WALTMAN L, VAN ECK N J. From Louvain to Leiden: Guaranteeing well-connected communities[J]. Scientific reports, 2019, 9: 5233. [23] TOUTANOVA K, CHEN D, PANTEL P, et al.Representing text for joint embedding of text and knowledge bases[C]. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015: 1499-1509. [24] DETTMERS T, MINERVINI P, STENETORP P, et al.Convolutional 2D knowledge graph embeddings[C].Proceedings of the AAAI conference on artificial intelligence, 2018, 32(1): 241-249. [25] VOORHEES E.The TREC-8 question answering track report[C]. Gaithersburg: Proceedings of TREC-8, 2000. [26] HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al.Evaluating collaborative filtering recommender systems[J]. ACM transactions on information systems, 2004, 22(1): 5-53. |