[1] 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. ZHAO C J.State of the art and recommended developmental strategic objectives of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7. [2] 付佳, 安增龙. 基于农业物联网技术的智慧农业研究进展[J]. 现代农业科技, 2020(5): 232-233, 235. FU J, AN Z L.Research progress on intelligent agriculture based on agricultural internet of things[J]. Modern agricultural science and technology, 2020(5): 232-233, 235. [3] 任妮, 郭婷, 孙艺伟. 全球智慧农业发展对我国“十四五”学科布局的启示[J]. 农业科技管理, 2021, 40(1): 1-4. REN N, GUO T, SUN Y W.Enlightenment of global smart agriculture development on the discipline arrangement during the "14th five-year plan" period in china[J]. Management of agricultural science and technology, 2021, 40(1): 1-4. [4] 高懋芳, 邱建军, 刘三超, 等. 基于文献计量的农业面源污染研究发展态势分析[J]. 中国农业科学, 2014, 47(6): 1140-1150. GAO M F, QIU J J, LIU S C, et al.Status and trends of agricultural diffuse pollution research based on bibliometrics[J]. Scientia agricultura sinica, 2014, 47(6): 1140-1150. [5] 孙秀良, 张建文, 安贺意. 基于文献计量的国际生物质能源研究发展态势分析[J]. 图书馆学刊, 2017, 39(7): 138-143. SUN X L, ZHANG J W, AN H Y.Development trend analysis of international biomass energy research based on bibliometrics[J]. Journal of library science, 2017, 39(7): 138-143. [6] 任妮, 周建农, 戴红君, 等. 基于文献计量的国内外信息感知与精细农业研究态势分析[J]. 情报探索, 2017(11): 104-113. REN N, ZHOU J N, DAI H J, et al.Bibliometrics-based analysis of researcheson information perception and precision agriculture at home and abroad[J]. Information research, 2017(11): 104-113. [7] 郑海朋, 阎建忠, 刘林山, 等. 基于文献计量的草地遥感研究进展[J]. 中国草地学报, 2017, 39(4): 101-110, 115. ZHENG H P, YAN J Z, LIU L S, et al.Research advances in grassland remote sensing based on bibliometrology[J]. Chinese journal of grassland, 2017, 39(4): 101-110, 115. [8] 马君, 刘强, 孙先明. 数字农业现状及其工程技术发展方向[J]. 农机使用与维修, 2019(12): 1-3. MA J, LIU Q, SUN X M.Current situation of digital agriculture and its engineering technology development direction[J]. Agricultural mechanization using & maintenance, 2019(12): 1-3. [9] 赵春江. 我国智慧农业发展的目标与任务[J]. 农机科技推广,2019(7): 4-6. ZHAO C J.Goals and tasks of smart agriculture development in China[J]. Agriculture machinery technology extension, 2019(7): 4-6. [10] 王应宽. 北斗导航融合精准农业助力新疆现代农业发展[J]. 农业工程技术, 2019, 39(36): 6-7. WANG Y K.Beidou navigation integrates precision agriculture to boost the development of modern agriculture in Xinjiang[J]. Agri-cultural engineering technology, 2019, 39(36): 6-7. [11] 赵春江, 杨信廷, 李斌, 等. 中国农业信息技术发展回顾及展望[J]. 农学学报, 2018, 8(1): 172-178. ZHAO C J, YANG X T, LI B, et al.Review and prospect of agricul-tural information technology development in China[J]. Agricultural science and engineering in China, 2018, 8(1): 172-178. [12] 南农. 美国科学院公布: 未来农业发展的五大方向[J]. 南方农机, 2019, 50(21): 6. NAN N.American academy of sciences announced: Five directions of agricultural development in the future[J]. China southern agri-cultural machinery, 2019, 50(21): 6. [13] KUMAR M, RAGHUWANSHI N S, SINGH R, et al.Estimating evapotranspiration using artificial neural network[J]. Journal of irri-gation and drainage engineering, 2002, 128(4): 224-233. [14] GUTIERREZ J, FRANCISCO V-M J, NIETO-GARIBAY A A, et al. Automated irrigation system using a wireless sensor network and GPRS module[J]. IEEE transactions on instrumentation and mea-surement, 2014, 63(1): 166-176. [15] SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al.Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational intelligence and neuroscience, 2016. [16] GONZALEZ L A, BISHOP-HURLEY G J, HANDCOCK R N, et al. Behavioral classification of data from collars containing motion sen-sors in grazing cattle[J]. Computers and electronics in agriculture, 2015, 110: 91-102. [17] SRBINOVSKA M, GAVROVSKI C, DIMCEV V, et al.Environmental parameters monitoring in precision agriculture using wireless sensor networks[J], Journal of cleaner production, 2015, 88: 297-307. [18] ASTRAND B, BAERVELDT A J.An agricultural mobile robot with vision-based perception for mechanical weed control[J]. Autonomous robots, 2002, 13(1): 21-35. [19] ELMASRY G, WANG N, VIGNEAULT C.Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks[J]. Postharvest biology and technology, 2009, 52(1): 1-8. [20] LU R F.Multispectral imaging for predicting firmness and soluble solids content of apple fruit[J]. Postharvest biology and technology, 2004, 31(2): 147-157. [21] PYDIPATI R, BURKS T F, LEE W S.Identification of citrus disease using color texture features and discriminant analysis[J]. Computers and electronics in agriculture, 2006, 52(1-2): 49-59. [22] ERCISLI S, SAYINCI B, KARA M, et al.Determination of size and shape features of walnut (Juglans regia l) cultivars using image processing[J]. Scientia horticulturae, 2012, 133: 47-55. [23] LIAO K, PAULSEN M R, REID J F, et al.Corn kernel breakage classification by machine vision using a neural-network classifier[J]. Transactions of the asae, 1993, 36(6): 1949-1953. [24] KUSSUL N, LAVRENIUK M, SKAKUN S, et al.Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE geoscience and remote sensing letters, 2017, 14(5): 778-782. [25] WANG L A, ZHOU X D, ZHU X K, et al.Estimation of biomass in wheat using random forest regression algorithm and remote sensing data[J]. Crop journal, 2016, 4(3): 212-219. [26] LIU T, LI R, ZHONG X C, et al.Estimates of rice lodging using indices derived from UAV visible and thermal infrared images[J]. Agricultural and forest meteorology, 2018, 252: 144-154. [27] WALTHALL C, DULANEY W, ANDERSON M, et al.A compari-son of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery[J]. Re-mote sensing of environment, 2004, 92(4): 465-474. [28] ZHANG R B, GUO J J, ZHANG L, et al.A calibration method of detecting soil water content based on the information-sharing in wireless sensor network[J]. Computers and electronics in agricul-ture, 2011, 76(2): 161-168. [29] YAO Q, XIAN D X, LIU Q J, et al.Automated counting of rice planthoppers in paddy fields based on image processing[J]. Journal of integrative agriculture, 2014, 13(8): 1736-1745. [30] TSAI D M, HUANG C Y.A motion and image analysis method for automatic detection of estrus and mating behavior in cattle[J]. Computers and electronics in agriculture, 2014, 104: 25-31. [31] YANG Q M, XIAO D Q, LIN S C.Feeding behavior recognition for group-housed pigs with the faster R-CNN[J]. Computers and elec-tronics in agriculture, 2018, 155: 453-460. [32] LI X H, CHENG X, YAN K, et al.A monitoring system for veg-etable greenhouses based on a wireless sensor network[J]. Sensors, 2010, 10(10): 8963-8980. [33] ZHANG X L, LIU F, HE Y, et al Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds[J]. Sensors, 2012, 12(12): 17234-17246. [34] QING Z S, JI B P, ZUDE M.Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis[J]. Journal of food engineering, 2007, 82(1): 58-67. [35] XU L M, ZHAO Y C.Automated strawberry grading system based on image processing[J]. Computers and electronics in agriculture, 2010, 71: S32-S39. [36] YI Q X, HUANG J F, WANG F M, et al.Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network[J]. Environmental science & technology, 2007, 41(19): 6770-6775. [37] JI S P, ZHANG C, XU A J, et al.3D convolutional neural networks for crop classification with multi-temporal remote sensing images[J]. Remote sensing, 2018, 10(1). [38] YANG C H, EVERITT J H, DU Q, et al.Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture[J]. Proceedings of the IEEE, 2013, 101(3): 582-592. |