[1] 吴建中. 推进开放数据助力开放科学[J]. 图书馆杂志, 2018, 37(2): 4-10. WU J Z.Promoting open data to help open science[J]. Library journal, 2018, 37(2): 4-10. [2] 邢文明, 郭安琪, 秦顺, 等. 科学数据管理与共享的FAIR原则——背景、内容与实施[J]. 信息资源管理学报, 2021, 11(2): 60-68, 84. XING W M, GUO A Q, QIN S, et al.FAIR principles for scientific data management and sharing -Background, content and implementation[J]. Journal of information resource management, 2021, 11(2): 60-68, 84. [3] WILKINSON, M, DUMONTIER, M, AALBERSBERG I, et al.The fair guiding principles for scientific data management and stewardship sci data[EB/OL]. [2022-02-10]. https://doi.org/10.1038/sdata.2016.18. [4] 宋佳, 温亮明, 李洋. 科学数据共享FAIR原则: 背景、内容及实践[J]. 情报资料工作, 2021, 42(1): 57-68. SONG J, WEN L M, LI Y.Scientific data sharing FAIR principles: Background, content and practice[J]. Information and documentation services, 2021, 42(1): 57-68. [5] 戚筠, 何琳. 领域数据库的FAIR原则实践——以生物信息学为例[J/OL]. 图书馆论坛: 1-9[2022-05-18]. http://kns.cnki.net/kcms/detail/44.1306.G2.20211214.1148.003.html. QI Y, HE L. Practice of FAIR principles for domain databases-The case of bioinformatics[J/OL]. Library Tribune: 1-9[2022-05-18].http://kns.cnki.net/kcms/detail/44.1306.G2.20211214.1148.003.html. [6] 朱妍昕, 徐维, 王霞, 等. 基于FAIR原则的循证医学文献本体构建——以哮喘药物治疗文献本体为例[J]. 情报理论与实践, 2022, 45(1): 187-195. ZHU Y X, XU W, WANG X, et al.Evidence-based medical literature ontology construction based on FAIR principles: An example of asthma drug therapy literature ontology[J]. Information studies: Theory & application, 2022, 45(1): 187-195. [7] 邱春艳. 开放科学愿景下欧盟推进FAIR原则的路径、经验及启示[J]. 情报理论与实践, 2021, 44(5): 199-205. QIU C Y.The path, experience and inspiration of the EU in promot-ing FAIR principles under the vision of open science[J]. Information studies: Theory & application, 2021, 44(5): 199-205. [8] 翟军, 梁佳佳, 吕梦雪, 等. 欧盟开放科学数据的FAIR原则及启示[J]. 图书与情报, 2020(6): 103-111. ZHAI J, LIANG J J, LV M X, et al.FAIR principles and inspiration of open scientific data in EU[J]. Library & information, 2020(6): 103-111. [9] 邢文明, 肖嘉丽, 陈继丽. 面向FAIR原则的《科学数据管理办法》优化研究[J]. 图书馆论坛, 2022, 42(4): 86-95. XING W M, XIAO J L, CHEN J L.Study on optimization of scien-tific data management approach oriented to FAIR principles[J]. Li-brary tribune, 2022, 42(4): 86-95. [10] 潘小多, 李新, 冉有华, 等. 开放科学背景下的科学数据开放共享: 国家青藏高原科学数据中心的实践[J]. 大数据, 2022, 8(1): 113-120. PAN X D, LI X, RAN Y H, et al.Open sharing of scientific data in the context of open science: The practice of the national Qinghai-Tibet plateau scientific data center[J]. Big data research, 2022, 8(1): 113-120. [11] 王艳翠, 李书宁, 李爱红. 研究数据联盟——建立全球数据共享和数据交换的基础架构[J]. 图书馆理论与实践, 2015(1): 52-54, 73. WANG Y C, LI S N, LI A H.Research data consortium-Establishing an infrastructure for global data sharing and data exchange[J]. Library theory and practice, 2015(1): 52-54, 73. [12] The research data alliance builds the social and technical bridges to enable the open sharing and reuse of data[EB/OL].[2016-03-22].https://www.rd-alliance.org/about-rda. [13] GO FAIR initiative[EB/OL]. [2021-12-22].https://www.go-fair.org/go-fair-initiative/. [14] GO CHANGE[EB/OL]. [2021-12-22].https://www.go-fair.org/go-fair-initiative/go-change/. [15] Vision and strategy[EB/OL]. [2021-12-22].https://www.go-fair.org/go-fair-initiative/vision-and-strategy/. [16] CODATA's mission[EB/OL].[2021-12-22].https://codata.org/about-codata/our-mission/. [17] JUTY N, WIMALARATNE S M, SOILAND-REYES S, et al.Unique, persistent, resolvable: Identifiers as the foundation of FAIR[J]. Data Intelligence, 2020, 2(1-2): 30-39. [18] WEIGEL T, SCHWARDMANN U, LUMP J K, et al.Making data and workflows findable for machines[J]. Data intelligence 2020, 2(1): 8. [19] BAREND M.FAIR Science for social machines: Let's share metadata knowlets in the internet of FAIR data and services[J]. Data intelligence, 2019, 1(1): 22-42. [20] ANNALISA L, MARK T, VIVIANA G, et al.The "A" of FAIR - As open as possible, as closed as necessary[J]. Data intelligence, 2020, 2(1-2): 47-55. [21] CHRISTOPHER B, BARRY N, STEPHAN R, et al.Ontology-based access control for FAIR data[J]. Data intelligence, 2020, 2(1-2): 66-77. [22] IGNASI L, THOMAS M.Licensing FAIR data for reuse[J]. Data intelligence, 2020, 2(1-2): 199-207. [23] PRYOR G.Why manage research data?[M]//Managing research data, London, England: Facet publishing, 2012: 1-16. [24] BISHOP B W, HANK C, WEBSTER J, et al.Scientists' data discov-ery and reuse behavior: (Meta)data fitness for use and the FAIR data principles[J]. Proceedings of the association for information science and technology, 2019, 56(1): 21-31. [25] GROTH P, COUSIJN H, CLARK T, et al.FAIR data reuse - The path through data citation[J]. Data intelligence, 2019, 2(1): 78-86. [26] SANSONE S A, MCQUILTON P, ROCCA-SERRA P, et al.FAIR sharing as a community approach to standards, repositories and policies[J]. Nat biotechnol, 2019, 37: 358-367. [27] PETER M, DOMINIQUE B, OYA B, et al.Helping the consumers and producers of standards, repositories and policies to enable FAIR data[J]. Data Intelligence, 2020, 2(1-2): 151-157. [28] VAN VLIJMEN H, MONS A, WAALKENS A, et al.The need of Industry to go FAIR[J]. Data intelligence, 2020, 2: 276-284. [29] MARGREET B, ANNALISA M.The FAIR funding model: Providing a framework for research funders to drive the transition toward FAIR data management and stewardship practices[J]. Data intelligence, 2020, 2(1-2): 171-180. [30] HANA P S, KRISTINA M H, PETER W, et al.FAIR convergence matrix: Optimizing the reuse of existing FAIR-related resources[J]. Data Intelligence, 2020, 2(1-2): 158-170. [31] WILKINSON M, SANSONE S A, SCHULTES E, et al.A design framework and exemplar metrics for FAIRness[J]. Sci data,2018, 5: 180118. [32] BAHIM C, C CASORRáN-AMILBURU, DEKKERS M, et al. The FAIR data maturity model: An approach to harmonise FAIR assessments[J]. Data science journal, 2020, 19(1): 41. [33] DEVARAJU A, MOKRANE M, CEPINSKAS L, et al.From Conceptualization to Implementation: FAIR Assessment of Research Data Objects[J]. Data science journal, 2021, 20(1): 1-14. [34] RICARDO DE M A, MICHEL D. Considerations for the conduction and interpretation of FAIRness evaluations[J]. Data intelligence, 2020, 2(1-2): 285-292. [35] THOMPSON M, BURGER K, KALIYAPERUMAL R, et al.Making FAIR easy with FAIR tools: From creolization to convergence[J]. Data intelligence, 2020, 2: 87-95. [36] JACOBSEN A, KALIYAPERUMAL R, SANTOS L, et al.A generic workflow for the data FAIRification process[J]. Data intelligence, 2020, 2(1): 10. [37] CAROLE G, SARAH C-B, STIAN S-R, et al.FAIR computational workflows[J]. Data intelligence, 2020, 2(1-2): 108-121. [38] 杨啸林, 杨晟, 潘虹洁, 等. FAIR准则与生物医学数据标准应用服务[J]. 中国医学伦理学, 2020, 33(2): 153-159. YANG X L, YANG S, PAN H J, et al.FAIR guidelines and appli-cation services for biomedical data standards[J]. Chinese medical ethics, 2020, 33(2): 153-159. [39] 李皓琳, 姜勇. 临床研究数据管理与共享最新进展[J]. 中国卒中杂志, 2020, 15(6): 600-605. LI H L, JIANG Y.Recent advances in clinical research data man-agement and sharing[J]. Chinese journal of stroke, 2020, 15(6): 600-605. [40] ALEXANDER A, LAURA A, SHOSHANA B, et al.Implementation of the FAIR data principles for exploratory biomarker data from clinical trials[J]. Data intelligence, 2021, 3(4): 631-662. [41] RDA and biodiversity[EB/OL].[2020-10-06].https://www.rd-alliance.org/rda-disciplines/rda-and-biodiversity. [42] LARRY L, DIMITRIS K, ALEX R.FAIR data and services in biodiversity science and geoscience[J]. Data intelligence, 2020, 2(1-2): 122-130. [43] Dissco in the research infrastructure landscape[EB/OL]. [2022-02-28].https://www.dissco.eu/dissco/ri-landscape/. [44] SHELLEY S, LEAH M, LESLEY W, et al.Growing the FAIR community at the intersection of the geosciences and pure and applied chemistry[J]. Data intelligence, 2020, 2(1-2): 139-150. [45] FREY J.Digital IUPAC[J]. Chemistry international newsmagazine for IUPAC, 2014, 36(1): 14-16. [46] Expanding iupac standards for chemical information - Industry applications & stakeholder perspectives[EB/OL]. [2017-03-20].https://iupac.org/body/036. [47] STALL S, YARMEY L R, BOEHM R, et al.Advancing FAIR data in Earth, space, and environmental science[J]. Eos, 2018, 99. [48] Enabling fair data project commitment statement in the earth, space, and environmental sciences[EB/OL]. [2022-03-10].https://copdess.org/enabling-fair-data-project/commitment-statement-in-the-earth-space-and-environmental-sciences/. [49] RDA and agriculture[EB/OL]. [2016-06-29].https://rd-alliance.org/rda-disciplines/rda-and-agriculture. [50] RDA and linguistics[EB/OL].[2017-08-01].https://www.rd-alliance.org/rda-disciplines/rda-and-linguistics. [51] RDA and the social sciences[EB/OL]. [2018-11-08].https://www.rd-alliance.org/rda-disciplines/rda-and-social-sciences. [52] 郭翊. 日本开放科学的发展、现状以及对我国的启示[J]. 晋图学刊, 2021(2): 71-79. GUO Y.The development of open science in Japan, its current situation, and the inspiration for China[J]. Shanxi library journal, 2021(2): 71-79. [53] 王译晗, 叶钰铭. 近10年国内外开放科学研究述评[J]. 农业图书情报学报, 2021, 33(10): 20-35. WANG Y H, YE Y M.Review on the Research of Open Science at Home and Abroad in Recent Ten Years[J]. Journal of Library and Information Science in Agriculture, 2021, 33(10): 20-35. [54] ESFRI background[EB/OL]. [2022-03-12].https://www.esfri.eu/. [55] ROADMAP 2018[EB/OL]. [2022-03-12]. http://roadmap2018.esfri.eu/media/1066/esfri-roadmap-2018.pdf. [56] PETER W, FRANCISKA DE J, DIETER VAN U, et al.State of FAIRness in ESFRI projects[J]. Data intelligence, 2020, 2(1-2): 230-237. [57] ROADMAP2021[EB/OL]. [2022-03-12]. https://roadmap2021.esfri.eu/media/1295/esfri-roadmap-2021.pdf. [58] 王敬, 王彦兵. 德国通用科研数据基础设施项目GeRDI的建设与启示[J]. 农业图书情报学报, 2022, 34(3): 28-36. WANG J, WANG Y B.The construction and inspiration of GeRDI, a general research data infrastructure project in germany[J]. Journal of library and information science in agriculture, 2022, 34(3): 28-36. [59] 高芳, 王艺颖. 法国开放科学顶层设计与实践进展分析及启示[J]. 全球科技经济瞭望, 2021, 36(5): 1-11. GAO F, WANG Y Y.Analysis of the progress of top-level design and practice of open science in France and its inspiration[J]. Global science, technology and economy outlook, 2021, 36(5): 1-11. [60] VAN REISEN M, STOKMANS M, BASAJJA M, et al.Towards the tipping point of FAIR implementation[J]. Data intelligence, 2020, 2: 264-275. [61] East Africa community, East African health research commission: Digital reach initiative roadmap[EB/OL].[2022-03-15].https://www.k4health.org/sites/default/files/digital-reach-initiative-roadmap.pdf. [62] GO-FAIR in Africa: Manifesto and work plan[EB/OL]. [2022-03-15].https://www.go-fair.org/wp-content/uploads/2019/08/Activity-Plan-with-the-Manifesto-of-the-GO-FAIR-in-AFRICA-Final-1-August-2019.pdf. [63] LUANA S, PATRíCIA H, VIVIANE V, et al. GO FAIR Brazil: A challenge for Brazilian data science[J]. Data intelligence, 2020, 2(1-2): 238-245. [64] Brazilian law on access to information(LAI)[EB/OL]. [2011-11-18]. http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2011/lei/l12527.htm. [65] National open data infrastructure(INDA)[EB/OL].[2022-03-17].https://www.governodigital.gov.br/transformacao/cidadania/dados-abertos/inda-infraestrutura-nacional-de-dados-abertos. [66] GO FAIR Brazil declaration[EB/OL]. [2022-03-17].https://www.go-fair.org/wp-content/uploads/2019/06/Declaration_GO-FAIR-Brazil_Jun2019.pdf. [67] FAIR funder collaboration: A pilot programme to make it easy for funders to require and for grantees to produce FAIR data[EB/OL]. [2022-03-17].https://arxiv.org/ftp/arxiv/papers/1902/1902.11162.pdf. |