中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (5): 58-71.doi: 10.13998/j.cnki.issn1002-1248.25-0297

Previous Articles     Next Articles

Generative AI-Driven Resource Discovery in Public Libraries: Service Optimization Based on a Dynamic Evaluation Model

ZHANG Li1, WANG Bo2,3, JING Shui4   

  1. 1.Xi'an Public Library, Xi'an 710024
    2.School of Journalism and New Media, Xi'an Jiaotong University, Xi'an 710049
    3.Library of University of Finance and Economics, Xi 'an 710100
    4.School of Public Administration, University of Finance and Economics, Xi 'an 710100
  • Received:2025-04-07 Online:2025-05-05 Published:2025-08-10

Abstract:

[Purpose/Significance] As generative artificial intelligence (AI) transforms library services, existing evaluation systems fail to capture dynamic characteristics of AI-driven resource discovery. This study develops a dynamic evaluation framework for public libraries' AI-enhanced services, addressing the gap between technological innovation and service assessment. [Method/Process] The research employed a mixed-methods approach to develop and verify a multi-dimensional evaluation framework based on Knowledge Organization Systems (KOS) theory. The framework comprises five primary dimensions: physical environment, technical architecture, content organization, user interaction, and innovation capability-operationalized through fifteen secondary indicators. Each indicator was carefully designed to capture AI-specific capabilities, including cognitive guidance efficiency, multimodal interaction precision, semantic network depth, and generation-enhanced utilization rate. A sophisticated hybrid weighting methodology was implemented, integrating subjective and objective approaches. For subjective weights, the Analytic Hierarchy Process was employed with 30 domain experts constructing pairwise comparison matrices using standardized scaling methods. Geometric mean aggregation was applied to synthesize individual judgments, with consistency ratios maintained below the threshold to ensure logical coherence. For objective weights, the entropy method analyzed actual evaluation data variance, with greater variance indicating higher discriminatory power. The final weights were derived through multiplicative synthesis combining both approaches. The empirical validation study involved collecting 492 valid questionnaires from 14 strategically selected public libraries representing different stages of AI implementation between September and November 2024: one municipal library with comprehensive AI deployment, 11 district libraries with partial implementation, and 2 county libraries in early adoption phases. The questionnaire utilized a five-point Likert scale to assess real-time service performance across multiple scenarios. Statistical analysis employed fuzzy comprehensive evaluation to handle uncertainty in subjective assessments, structural equation modeling to validate construct relationships, and latent class analysis to identify distinct user interaction patterns. The framework demonstrated high reliability with Cronbach's alpha reaching 0.845 and strong construct validity with KMO value of 0.873. [Results/Conclusions] Content organization emerged as the most critical dimension with a combined weight of 0.302 2, while semantic network depth, cognitive guidance efficiency, and cross-media consistency ranked as top secondary indicators with weights of 0.090 3, 0.086 1, and 0.084 7 respectively. Performance evaluation revealed content organization scoring 74.873 points versus user interaction at 68.040 points, highlighting the gap between technical capabilities and user experience. Significant differences existed across library levels, with municipal libraries outperforming county libraries by over one point in technical architecture and semantic network depth. Four distinct user patterns emerged: technology-oriented, content-immersive, efficiency-focused, and assistance-dependent. Each requires a tailored service approach. The study proposes the following optimization strategies: multimodal interaction frameworks, adaptive user profiling, hierarchical collaboration mechanisms, and knowledge graph-based content reorganization.

Key words: generative artificial intelligence, resource discovery services, dynamic evaluation model, smart library, large language models

CLC Number: 

  • G251

Fig.1

Metric architecture for AI-driven resource discovery services"

Table 1

Three-tier shelf structure"

目标层准则层方案层
生成式AI驱动的资源发现服务动态评价模型A1物理环境A11认知引导效率
A12沉浸式技术集成
A13环境智能响度
B1技术架构B11负载弹性能力
B12多模态交互精度
B13数据治理成熟度
C1内容组织C11语义网络深度
C12跨媒介一致性
C13生成增强使用率
C14地域资源活跃度
D1用户交互D11认知负荷指数
D12情感投入程度
D13知识转化效率
F1创新能力F11创新投入产出比
F12迭代优化速度

Table 2

Comparison of scale values in pairs"

成对比较标准定义内容
1同等重要两个要素具有相等的重要性
3稍微重要一个要素比另外一个要素稍微重要
5相当重要强烈倾向于某一要素
7明显重要非常倾向于某一要素
9绝对重要两个要素比较时,某一要素非常重要,明显强于另一个要素的可控制的最大可能
2、4、6、8用于上述标准的折中值
上述值的倒数当A要素与B要素比较时,若被赋予以上某个标度值,则B要素与A要素的重要程度就是那个标度的倒数

Table 3

RI value of the average random consistency index of the matrix"

矩阵阶数123456789101112
RI000.520.891.121.261.361.411.461.491.521.54

Table 4

Index portfolio comprehensive weight summary of generative AI-driven resource discovery service dynamic evaluation"

准则层方案层AHP综合权重熵权法综合权重组合综合权重
物理环境A1A11认知引导效率0.058 20.096 30.086 1
A12沉浸式技术集成度0.068 70.071 40.075 4
A13环境智能响应度0.087 00.047 10.063 0
技术架构B1B11负载弹性能力0.060 70.084 80.079 2
B12多模态交互精度0.068 50.067 10.070 6
B13数据治理成熟度0.086 10.054 80.072 5
内容组织C1C11语义网络深度0.050 70.115 80.090 3
C12跨媒介一致性0.058 80.093 70.084 7
C13生成增强使用率0.066 00.074 20.075 3
C14地域资源活跃度0.095 90.035 20.051 9
用户交互D1D11认知负荷指数0.054 90.071 30.060 2
D12情感投入程度0.076 10.041 90.049 0
D13知识转化效率0.017 40.028 50.007 6
创新能力F1F11创新投入产出比0.088 00.052 60.071 2
F12迭代优化速度0.063 00.065 10.063 0

Table 5

Index weight summary of generative AI-driven resource discovery service dynamic evaluation"

准则层组合相对权重方案层组合相对权重组合综合权重
A1物理环境0.224 5A11认知引导效率0.383 50.086 1
A12沉浸式技术集成度0.335 90.075 4
A13环境智能响应度0.280 60.063 0
B1技术架构0.222 3B11负载弹性能力0.356 30.079 2
B12多模态交互精度0.317 60.070 6
B13数据治理成熟度0.326 10.072 5
C1内容组织0.302 2C11语义网络深度0.298 80.090 3
C12跨媒介一致性0.280 30.084 7
C13生成增强使用率0.249 20.075 3
C14地域资源活跃度0.171 70.051 9
D1用户交互0.116 8D11认知负荷指数0.515 40.060 2
D12情感投入程度0.419 50.049 0
D13知识转化效率0.065 10.007 6
F1创新能力0.134 2F11创新投入产出比0.530 60.071 2
F12迭代优化速度0.469 40.063 0

Table 6

Fuzzy comprehensive evaluation results of first-level indicators"

指标优秀良好一般较差
A1物理环境0.2240.3760.2450.1060.049
B1技术架构0.1830.3420.2670.1530.055
C1内容组织0.2610.3970.2080.0940.040
D1用户交互0.1730.3280.2840.1580.057
F1创新能力0.1970.3450.2560.1490.053

Table 7

First-level indicator fuzzy comprehensive evaluation score"

评价维度评价得分(5分制)评价得分(百分制)排序
总体评价3.62272.436/
内容组织3.74474.8731
创新能力3.68473.6802
物理环境3.62072.4003
技术架构3.44568.9004
用户交互3.40268.0405
[1] HALBURAGI S, MUKARAMBI P. Use of artificial intelligence (AI) technology futures in library[J]. International journal of research in library science, 2023, 9(2): 14-19.
[2] 中国政府网. 中共中央关于进一步全面深化改革 推进中国式现代化的决定[EB/OL]. [2025-05-01]. .
[3] 郑一波, 曾建勋. 图书馆资源发现系统的实质与应对策略[J]. 情报科学, 2022, 40(8): 134-137, 143.
ZHENG Y B, ZENG J X. The essence and coping of library resource discovery system[J]. Information science, 2022, 40(8): 134-137, 143.
[4] 李慧芳, 孟祥保. 近十年国内外图书馆资源发现系统研究与实践进展述评[J]. 图书情报工作, 2020, 64(6): 120-129.
LI H F, MENG X B. A review of research and practice of library resource discovery system in domestic and foreign: 2010-2019[J]. Library and information service, 2020, 64(6): 120-129.
[5] CHEN Y N. An evaluation approach for linked data public access catalogs[J]. Journal of library and information studies, 2021, 2: 113-143.
[6] 寿建琪. 走向“已知之未知”:GPT大语言模型助力实现以人为本的信息检索[J]. 农业图书情报学报, 2023, 35(5): 16-26.
SHOU J Q. Towards known unknowns: GPT large language models empower Human-Centered information retrieval[J]. Journal of library and information science in agriculture, 2023, 35(5): 16-26.
[7] 孙绍丹, 邓君, 张子姝, 等. 融入知识元概念的近代报纸资源主题知识组织研究——以《盛京时报》为例[J]. 农业图书情报学报, 2022, 34(4): 50-62.
SUN S D, DENG J, ZHANG Z S, et al. Topic knowledge organization of modern newspaper resources by incorporating the knowledge element concept: Taking the "Shengjing Times" as an example[J]. Journal of library and information science in agriculture, 2022, 34(4): 50-62.
[8] 蔡祎然, 胡正银, 刘春江. 大语言模型赋能科技文献数据挖掘进展分析[J]. 农业图书情报学报, 2025, 37(2): 4-22.
CAI Y R, HU Z Y, LIU C J. Analysis of progress in data mining of scientific literature using large language models[J]. Journal of library and information science in agriculture, 2025, 37(2): 4-22.
[9] 李颖, 张果, 曹羽飞. 基于用户需求的学术资源发现系统服务功能研究[J]. 图书馆工作与研究, 2025(5): 44-54, 96.
LI Y, ZHANG G, CAO Y F. Research on the service function of academic resource discovery system based on user needs[J]. Library work and study, 2025(5): 44-54, 96.
[10] 张瑞红. 基于过程控制的图书馆知识管理动态评价模型研究[J]. 图书馆学研究, 2013(17): 69-72.
ZHANG R H. Library knowledge management dynamic evaluation model based on process control[J]. Research on library science, 2013(17): 69-72.
[11] 司莉, 何依, 郭晓彤. 国外知识组织研究主题、特征及思考[J]. 情报资料工作, 2024, 45(1): 12-22.
SI L, HE Y, GUO X T. Research on foreign knowledge organization: Themes, characteristics and thoughts[J]. Information and documentation services, 2024, 45(1): 12-22.
[12] 范昊, 郑小川, 热孜亚·艾海提, 等. 基于知识图谱的标准文献多维知识发现研究[J]. 情报理论与实践, 2023, 46(9): 175-184.
FAN H, ZHENG X C, REZIYA A, et al. Research on multidimensional knowledge discovery of standards based on knowledge graph[J]. Information studies: Theory & application, 2023, 46(9): 175-184.
[13] BUSTAMANTE G R, NELSON E J, AMES D P, et al. Water data explorer: An open-source web application and Python library for water resources data discovery[J]. Water, 2021, 13(13): 1850.
[14] CHEN Y N. An investigation of linked data catalogue features in libraries, archives, and museums: A checklist approach[J]. The electronic library, 2023, 41(5): 700-721.
[15] 毕强. 数字图书馆知识组织系统建构的发展趋势: 从机器可读到机器可理解[J]. 国家图书馆学刊, 2010, 19(1): 12-17.
BI Q. Development trend of knowledge organization system construction in digital library: From machine readability to machine understandability[J]. Journal of the national library of China, 2010, 19(1): 12-17.
[16] SARACEVIC T. Modeling interaction in information retrieval (IR): A review and proposal[J]. Proceedings of the American society for information science, 1996, 33: 3-9.
[17] ZHANG Y F, BELLAMY R, VARSHNEY K. Joint optimization of AI fairness and utility: A human-centered approach[C]//Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. New York NY USA. ACM, 2020: 400-406.
[18] AMERSHI S, WELD D, VORVOREANU M, et al. Guidelines for human-AI interaction[C]//Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Glasgow Scotland Uk. ACM, 2019: 1-13.
[19] BORGMAN C L. From Gutenberg to the global information infrastructure: Access to information in the networked world[M]. Cambridge: MIT Press, 2000.
[20] ARMS W Y. Digital libraries[M]. Cambridge: MIT Press, 2000.
[21] 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7): 93-100.
DENG X, LI J M, ZENG H J, et al. Research on computation methods of AHP wight vector and its applications[J]. Mathematics in practice and theory, 2012, 42(7): 93-100.
[1] LIU Wei, ZHANG Lei, JI Ting, CHEN Xiaoyang. Shaping the Smart Libraries with AI: An Agent-based, Next-Generation Library Service Platform [J]. Journal of library and information science in agriculture, 2025, 37(5): 15-26.
[2] SHI Xujie, YUAN Fan, LI Jia. Searching as Learning in the Context of Generative Artificial Intelligence: Technological Pathways, Behavioral Evolution, and Ethical Challenges [J]. Journal of library and information science in agriculture, 2025, 37(5): 40-57.
[3] SANG Yuanyuan. Multimodal Learning Technology Aimed at Exploring the Innovative Path of Library Intelligence Service [J]. Journal of library and information science in agriculture, 2025, 37(3): 42-52.
[4] GOU Ruike, LUO Wei. Influencing Factors of Continuous Use Intention of "Generation Z" Users of an AIGC Platform [J]. Journal of library and information science in agriculture, 2025, 37(3): 66-80.
[5] QIAO Jinhua, MA Xueyun. Risks and Regulations for Application of the LLaMA Model in University Future Learning Centers [J]. Journal of library and information science in agriculture, 2025, 37(2): 37-48.
[6] CAI Yiran, HU Zhengyin, LIU Chunjiang. Analysis of Progress in Data Mining of Scientific Literature Using Large Language Models [J]. Journal of library and information science in agriculture, 2025, 37(2): 4-22.
[7] SUN Lijuan. Exploring the Transition of Public Librarians to "Prompt Librarians" from the Perspective of New Quality Productive Forces [J]. Journal of library and information science in agriculture, 2025, 37(1): 17-32.
[8] LUO Guofeng, YI Tong, YAN Zhouzhou. Critical Information Literacy Education in University Libraries from the Perspective of AIGC Application [J]. Journal of library and information science in agriculture, 2025, 37(1): 47-58.
[9] Haoxian WANG, Ziming ZHOU, Feifei DING, Chengfu WEI. Digital Humanities & Large Language Models: Practice and Research in Semantic Retrieval of Ancient Documents [J]. Journal of library and information science in agriculture, 2024, 36(9): 89-101.
[10] Huaming LI. Opportunities and Challenges: The Use of ChatGPT in Enabling Library Knowledge Services [J]. Journal of library and information science in agriculture, 2024, 36(8): 96-105.
[11] Baiyang LI, Rong SUN. Construction of an AI Literacy General Education Curriculum Based on "Knowledge-Skills" Navigation [J]. Journal of library and information science in agriculture, 2024, 36(8): 34-42.
[12] Jia LIU. Innovation and Risk Avoidance of Smart Library Services Based on Generative Artificial Intelligence [J]. Journal of library and information science in agriculture, 2024, 36(7): 63-75.
[13] Mo LI, Bin YANG. From Generative Artificial Intelligence to Artificial General Intelligence: Enabling Innovation Models in Library Knowledge Services [J]. Journal of library and information science in agriculture, 2024, 36(6): 50-61.
[14] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of library and information science in agriculture, 2024, 36(2): 36-50.
[15] YANG Xinya, RAN Weiran, LI Li. Key Points of the 15th Five-Year Plan for University Libraries to Support the Construction of a Powerful Country in the Education Sector [J]. Journal of library and information science in agriculture, 2024, 36(12): 35-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!