1 |
王飞跃, 缪青海. 人工智能驱动的科学研究新范式: 从AI4S到智能科学[J]. 中国科学院院刊, 2023, 38(4): 536-540.
|
|
WANG F Y, MIAO Q H. Novel paradigm for AI-driven scientific research: From AI4S to intelligent science[J]. Bulletin of Chinese academy of sciences, 2023, 38(4): 536-540.
|
2 |
李国杰. 智能化科研(AI4R): 第五科研范式[J]. 中国科学院院刊, 2024, 39(1): 1-9.
|
|
LI G J. AI4R: The fifth scientific research paradigm[J]. Bulletin of Chinese academy of sciences, 2024, 39(1): 1-9.
|
3 |
罗威, 谭玉珊. 基于内容的科技文献大数据挖掘与应用[J]. 情报理论与实践, 2021, 44(6): 154-157.
|
|
LUO W, TAN Y S. Content-based data mining and application of scientific and technical literature big data[J]. Information studies: Theory & application, 2021, 44(6): 154-157.
|
4 |
熊泽润, 宋立荣. 科学数据出版中同行评议的问题思考[J]. 中国科技资源导刊, 2022, 54(5): 21-29.
|
|
XIONG Z R, SONG L R. Thinking about peer review in scientific data publishing[J]. China science & technology resources review, 2022, 54(5): 21-29.
|
5 |
代冰, 胡正银. 基于文献的知识发现新近研究综述[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
|
|
DAI B, HU Z Y. Review of studies on literature-based discovery[J]. Data analysis and knowledge discovery, 2021, 5(4): 1-12.
|
6 |
钱力, 张智雄, 伍大勇, 等. 科技文献大模型: 方法、框架与应用[J]. 中国图书馆学报, 2024, 50(6): 45-58.
|
|
QIAN L, ZHANG Z X, WU D Y, et al. The large language model for scientific literature: Method, framework, and application[J]. Journal of library science in China, 2024, 50(6): 45-58.
|
7 |
支凤稳, 赵梦凡, 彭兆祺. 开放科学环境下科学数据与科技文献关联模式研究[J]. 数字图书馆论坛, 2023(10): 52-61.
|
|
ZHI F W, ZHAO M F, PENG Z Q. Relevance pattern of scientific data and scientific literature in open science environment[J]. Digital library forum, 2023(10): 52-61.
|
8 |
李泽宇, 刘伟. 基于大语言模型全流程微调的叙词表等级关系构建研究[J]. 情报理论与实践, 2025, 48(4): 152-162.
|
|
LI Z Y, LIU W. Research on the construction of hierarchical relationships in thesaurus based on the full-process fine-tuning of large language model[J]. Information studies: Theory & application, 2025, 48(4): 152-162.
|
9 |
曾建勋. “十四五”期间我国科技情报事业的发展思考[J]. 情报理论与实践, 2021, 44(1): 1-7.
|
|
ZENG J X. Reflection on the development of China's scientific and technical information industry during the "14th Five-Year Plan" period[J]. Information studies: Theory & application, 2021, 44(1): 1-7.
|
10 |
TSAI C W, LAI C F, CHAO H C, et al. Big data analytics: A survey[J]. Journal of big data, 2015, 2(1): 21.
|
11 |
赵冬晓, 王效岳, 白如江, 等. 面向情报研究的文本语义挖掘方法述评[J]. 现代图书情报技术, 2016(10): 13-24.
|
|
ZHAO D X, WANG X Y, BAI R J, et al. Semantic text mining methodologies for intelligence analysis[J]. New technology of library and information service, 2016(10): 13-24.
|
12 |
车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学: 信息科学, 2023, 53(9): 1645-1687.
|
|
CHE W X, DOU Z C, FENG Y S, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: Challenges, opportunities and future directions[J]. Scientia sinica (informationis), 2023, 53(9): 1645-1687.
|
13 |
张智雄, 于改红, 刘熠, 等. ChatGPT对文献情报工作的影响[J]. 数据分析与知识发现, 2023, 7(3): 36-42.
|
|
ZHANG Z X, YU G H, LIU Y, et al. The influence of ChatGPT on library & information services[J]. Data analysis and knowledge discovery, 2023, 7(3): 36-42.
|
14 |
刘熠, 张智雄, 王宇飞, 等. 基于语步识别的科技文献结构化自动综合工具构建[J]. 数据分析与知识发现, 2024, 8(2): 65-73.
|
|
LIU Y, ZHANG Z X, WANG Y F, et al. Constructing automatic structured synthesis tool for sci-tech literature based on move recognition[J]. Data analysis and knowledge discovery, 2024, 8(2): 65-73.
|
15 |
常志军, 钱力, 吴垚葶, 等. 面向主题场景的科技文献AI数据体系建设: 技术框架研究与实践[J]. 农业图书情报学报, 2024, 36(9): 4-17.
|
|
CHANG Z J, QIAN L, WU Y T, et al. Construction of a scientific literature AI data system for the thematic scenario: Technical framework research and practice[J]. Journal of library and information science in agriculture, 2024, 36(9): 4-17.
|
16 |
梁爽, 刘小平. 基于文本挖掘的科技文献主题演化研究进展[J]. 图书情报工作, 2022, 66(13): 138-149.
|
|
LIANG S, LIU X P. Research progress on topic evolution of scientific and technical literatures based on text mining[J]. Library and information service, 2022, 66(13): 138-149.
|
17 |
JIANG M. Very large language model as a unified methodology of text mining[J/OL]. arXiv preprint arXiv:2212.09271, 2022.
|
18 |
HUANG Q, SUN Y B, XING Z C, et al. API entity and relation joint extraction from text via dynamic prompt-tuned language model[J]. ACM transactions on software engineering and methodology, 2024, 33(1): 1-25.
|
19 |
GUPTA S, MAHMOOD A, SHETTY P, et al. Data extraction from polymer literature using large language models[J]. Communications materials, 2024, 5: 269.
|
20 |
KUMAR S, JAAFREH R, SINGH N, et al. Introducing MagBERT: A language model for magnesium textual data mining and analysis[J]. Journal of magnesium and alloys, 2024, 12(8): 3216-3228.
|
21 |
GUPTA T, ZAKI M, ANOOP KRISHNAN N M, et al. MatSciBERT: A materials domain language model for text mining and information extraction[J]. NPJ computational materials, 2022, 8: 102.
|
22 |
LIU Y F, LI S Y, DENG Y, et al. SSuieBERT: Domain adaptation model for Chinese space science text mining and information extraction[J]. Electronics, 2024, 13(15): 2949.
|
23 |
李盼飞, 杨小康, 白逸晨, 等. 基于大语言模型的中医医案命名实体抽取研究[J]. 中国中医药图书情报杂志, 2024, 48(2): 108-113.
|
|
LI P F, YANG X K, BAI Y C, et al. Study on named entity extraction in TCM medical records based on large language models[J]. Chinese journal of library and information science for traditional Chinese medicine, 2024, 48(2): 108-113.
|
24 |
杨冬菊, 黄俊涛. 基于大语言模型的中文科技文献标注方法[J]. 计算机工程, 2024, 50(9): 113-120.
|
|
YANG D J, HUANG J T. Chinese scientific literature annotation method based on large language model[J]. Computer engineering, 2024, 50(9): 113-120.
|
25 |
WEI X, CUI X Y, CHENG N, et al. ChatIE: Zero-shot information extraction via chatting with ChatGPT[J/OL]. e-printsarXiv, arXiv: 2302.10205., 2023.
|
26 |
ZHENG Z L, ZHANG O F, BORGS C, et al. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis[J]. Journal of the American chemical society, 2023, 145(32): 18048-18062.
|
27 |
陆伟, 刘寅鹏, 石湘, 等. 大模型驱动的学术文本挖掘: 推理端指令策略构建及能力评测[J]. 情报学报, 2024, 43(8): 946-959.
|
|
LU W, LIU Y P, SHI X, et al. Large language model-driven academic text mining: Construction and evaluation of inference-end prompting strategy[J]. Journal of the China society for scientific and technical information, 2024, 43(8): 946-959.
|
28 |
杨金庆, 吴乐艳, 魏雨晗, 等. 科技文献新兴话题识别研究进展[J]. 情报学进展, 2020, 13(00): 202-234.
|
|
YANG J Q, WU L Y, WEI Y H, et al. Research progress on the identification of emerging topics in scientific and technological literature[J]. Advances in information science, 2020, 13(00): 202-234.
|
29 |
POLAK M P, MORGAN D. Extracting accurate materials data from research papers with conversational language models and prompt engineering[J]. Nature communications, 2024, 15: 1569.
|
30 |
XIE T, WAN Y W, HUANG W, et al. DARWIN series: Domain specific large language models for natural science[J/OL]. arXiv preprint arXiv:2308.13565, 2023.
|
31 |
杨帅, 刘建军, 金帆, 等. 人工智能与大数据在材料科学中的融合: 新范式与科学发现[J]. 科学通报, 2024, 69(32): 4730-4747.
|
|
YANG S, LIU J J, JIN F, et al. Integration of artificial intelligence and big data in materials science: New paradigms and scientific discoveries[J]. Chinese science bulletin, 2024, 69(32): 4730-4747.
|
32 |
SZYMANSKI N J, RENDY B, FEI Y X, et al. An autonomous laboratory for the accelerated synthesis of novel materials[J]. Nature, 2023, 624(7990): 86-91.
|
33 |
AI Q X, MENG F W, SHI J L, et al. Extracting structured data from organic synthesis procedures using a fine-tuned large language model[J]. Digital discovery, 2024, 3(9): 1822-1831.
|
34 |
ZHANG C H, LIN Q H, ZHU B W, et al. SynAsk: Unleashing the power of large language models in organic synthesis[J]. Chemical science, 2025, 16(1): 43-56.
|
35 |
GAO Y J, MYERS S, CHEN S, et al. When raw data prevails: Are large language model embeddings effective in numerical data representation for medical machine learning applications?[J/OL]. arXiv preprint arXiv:2408.11854, 2024.
|
36 |
DU Y, WANG L D, HUANG M Y, et al. Autodive: An integrated onsite scientific literature annotation tool[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations). Toronto, Canada. Stroudsburg, PA, USA: ACL, 2023: 76-85.
|
37 |
ZHANG Y, CHEN X S, JIN B W, et al. A comprehensive survey of scientific large language models and their applications in scientific discovery[J/OL]. arXiv preprint arXiv:2406.10833, 2024.
|
38 |
JETHANI N, JONES S, GENES N, et al. Evaluating ChatGPT in information extraction: A case study of extracting cognitive exam dates and scores[J/OL]. medRxiv, 2023.
|
39 |
JAMI H C, SINGH P R, KUMAR A, et al. CCU-llama: A knowledge extraction LLM for carbon capture and utilization by mining scientific literature data[J]. Industrial & engineering chemistry research, 2024, 63(41): 17585-17598.
|
40 |
Automating scientific knowledge extraction and modeling (ASKEM)[EB/OL]. [2025-01-14].
|
41 |
于丰畅, 程齐凯, 陆伟. 基于几何对象聚类的学术文献图表定位研究[J]. 数据分析与知识发现, 2021, 5(1): 140-149.
|
|
YU F C, CHENG Q K, LU W. Locating academic literature figures and tables with geometric object clustering[J]. Data analysis and knowledge discovery, 2021, 5(1): 140-149.
|
42 |
于丰畅, 陆伟. 一种学术文献图表位置标注数据集构建方法[J]. 数据分析与知识发现, 2020, 4(6): 35-42.
|
|
YU F C, LU W. Constructing data set for location annotations of academic literature figures and tables[J]. Data analysis and knowledge discovery, 2020, 4(6): 35-42.
|
43 |
MASSON D, MALACRIA S, VOGEL D, et al. ChartDetective: Easy and accurate interactive data extraction from complex vector charts[C]//Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. Hamburg Germany. ACM, 2023: 1-17.
|
44 |
ZHOU F F, ZHAO Y, CHEN W J, et al. Reverse-engineering bar charts using neural networks[J]. Journal of visualization, 2021, 24(2): 419-435.
|
45 |
黄梓航, 陈令羽, 蒋秉川. 基于文本解析的栅格类图表知识抽取方法[J]. 地理空间信息, 2023, 21(10): 23-27.
|
|
HUANG Z H, CHEN L Y, JIANG B C. Knowledge extraction method for raster chart based on text parsing[J]. Geospatial information, 2023, 21(10): 23-27.
|
46 |
LUO J Y, LI Z K, WANG J P, et al. ChartOCR: Data extraction from charts images via a deep hybrid framework[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). January 3-8, 2021, Waikoloa, HI, USA. IEEE, 2021: 1916-1924.
|
47 |
琚江舟, 毛云麟, 吴震, 等. 多粒度单元格对比的文本和表格数值问答模型[J/OL]. 软件学报, 2024: 1-21.
|
|
JU J Z, MAO Y L, WU Z, et al. Text and table numerical question answering model for multi-granularity cell comparison[J/OL]. Journal of software, 2024: 1-21.
|
48 |
容姿, 丁一, 李依泽, 等. 图表大数据解析方法综述[J]. 计算机辅助设计与图形学学报, 2025, 37(2): 216-228.
|
|
RONG Z, DING Y, LI Y Z, et al. Review of parsing methods for big data in chart[J]. Journal of computer-aided design & computer graphics, 2025, 37(2): 216-228.
|
49 |
WU A Y, WANG Y, SHU X H, et al. AI4VIS: Survey on artificial intelligence approaches for data visualization[J]. IEEE transactions on visualization and computer graphics, 2022, 28(12): 5049-5070.
|
50 |
MISHRA P, KUMAR S, CHAUBE M K. Evaginating scientific charts: Recovering direct and derived information encodings from chart images[J]. Journal of visualization, 2022, 25(2): 343-359.
|
51 |
ZHAO J Y, HUANG S, COLE J M. OpticalBERT and OpticalTable-SQA: Text- and table-based language models for the optical-materials domain[J]. Journal of chemical information and modeling, 2023, 63(7): 1961-1981.
|
52 |
黎颖, 吴清锋, 刘佳桐, 等. 引导性权重驱动的图表问答重定位关系网络[J]. 中国图象图形学报, 2023, 28(2): 510-521.
|
|
LI Y, WU Q F, LIU J T, et al. Leading weight-driven re-position relation network for figure question answering[J]. Journal of image and graphics, 2023, 28(2): 510-521.
|
53 |
LUO R, SASTIMOGLU Z, FAISAL A I, et al. Evaluating the efficacy of large language models for systematic review and meta-analysis screening[J/OL]. medRxiv, 2024.
|
54 |
WANG Y, GUO Q, YAO W, et al. AutoSurvey: Large language models can automatically write surveys[J]. Advances in neural information processing systems, 2024, 37: 115119-115145.
|
55 |
周莉. 生成式人工智能对学术期刊的变革与赋能研究[J]. 黄冈师范学院学报, 2024, 44(6): 57-60.
|
|
ZHOU L. The reform and empowerment of generative artificial intelligence to academic journals[J]. Journal of Huanggang normal university, 2024, 44(6): 57-60.
|
56 |
WANG S, SCELLS H, KOOPMAN B, et al. Can ChatGPT write a good Boolean query for systematic review literature search? [C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2023: 1426-1436.
|
57 |
ANTU S A, CHEN H, RICHARDS C K. Using LLM (large language model) to improve efficiency in literature review for undergraduate research[J]. LLM@AIED, 2023: 8-16.
|
58 |
WU S C, MA X, LUO D H, et al. Automated review generation method based on large language models[J/OL]. arXiv preprint arXiv:2407.20906, 2024.
|
59 |
姜鹏, 任龑, 朱蓓琳. 大语言模型在分类标引工作中的应用探索[J]. 农业图书情报学报, 2024, 36(5): 32-42.
|
|
JIANG P, REN Y, ZHU B L. Exploration and practice of classification indexing combined with large language models[J]. Journal of library and information science in agriculture, 2024, 36(5): 32-42.
|
60 |
YAN X C, FENG S Y, YUAN J K, et al. SurveyForge: On the outline heuristics, memory-driven generation, and multi-dimensional evaluation for automated survey writing[J/OL]. arXiv preprint arXiv:2503.04629, 2025.
|
61 |
LUO Z M, YANG Z L, XU Z X, et al. LLM4SR: A survey on large language models for scientific research[J/OL]. arXiv preprint arXiv:2501.04306, 2025.
|
62 |
马畅, 田永红, 郑晓莉, 等. 基于知识蒸馏的神经机器翻译综述[J]. 计算机科学与探索, 2024, 18(7): 1725-1747.
|
|
MA C, TIAN Y H, ZHENG X L, et al. Survey of neural machine translation based on knowledge distillation[J]. Journal of frontiers of computer science and technology, 2024, 18(7): 1725-1747.
|
63 |
陈文杰, 胡正银, 石栖, 等. 融合知识图谱与大语言模型的科技文献复杂知识对象抽取研究[J/OL]. 现代情报, 2024: 1-20.
|
|
CHEN W J, HU Z Y, SHI X, et al. Research on scientific and technological literature complex knowledge object extraction fusing knowledge graph and large language model[J/OL]. Journal of modern information, 2024: 1-20.
|
64 |
KUMICHEV G, BLINOV P, KUZKINA Y, et al. MedSyn: LLM-based synthetic medical text generation framework[M]//Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. Cham: Springer Nature Switzerland, 2024: 215-230.
|
65 |
YANG D Y, MONAIKUL N, DING A, et al. Enhancing table representations with LLM-powered synthetic data generation[J/OL]. arXiv preprint arXiv:2411.03356, 2024.
|
66 |
ZHEZHERAU A, YANOCKIN A. Hybrid training approaches for LLMs: Leveraging real and synthetic data to enhance model performance in domain-specific applications[J/OL]. arXiv preprint arXiv:2410.09168, 2024.
|
67 |
GUO X, CHEN Y Q. Generative AI for synthetic data generation: Methods, challenges and the future[J/OL]. arXiv preprint arXiv:2403.04190, 2024.
|
68 |
LONG L, WANG R, XIAO R X, et al. On LLMs-driven synthetic data generation, curation, and evaluation: A survey[J/OL]. arXiv preprint arXiv:2406.15126, 2024.
|
69 |
KIM S, SUK J, YUE X, et al. Evaluating language models as synthetic data generators[J/OL]. arXiv preprint arXiv:2412.03679, 2024.
|
70 |
GOUGHERTY A V, CLIPP H L. Testing the reliability of an AI-based large language model to extract ecological information from the scientific literature[J]. NPJ biodiversity, 2024, 3: 13.
|
71 |
ZHANG J J, BAI Y S, LV X, et al. LongCite: Enabling LLMs to generate fine-grained citations in long-context QA[J/OL]. arXiv preprint arXiv:2409.02897, 2024.
|
72 |
ZHANG W, WANG Q G, KONG X T, et al. Fine-tuning large language models for chemical text mining[J]. Chemical science, 2024, 15(27): 10600-10611.
|
73 |
XIAO T, ZHU J B. Foundations of large language models[J/OL]. arXiv preprint arXiv:2501.09223, 2025.
|
74 |
MEDISETTI G, COMPSON Z, FAN H, et al. LitAI: Enhancing multimodal literature understanding and mining with generative AI[J]. Proceedings IEEE conference on multimedia information processing and retrieval, 2024, 2024: 471-476.
|
75 |
WEI H R, LIU C L, CHEN J Y, et al. General OCR theory: Towards OCR-2.0 via a unified end-to-end model[J/OL]. arXiv preprint arXiv:2409.01704, 2024.
|
76 |
POZNANSKI J, BORCHARDT J, DUNKELBERGER J, et al. olmOCR: Unlocking trillions of tokens in PDFs with vision language models[J/OL]. arXiv preprint arXiv:2502.18443, 2025.
|
77 |
SU A F, WANG A W, YE C, et al. TableGPT2: A large multimodal model with tabular data integration[J/OL]. arXiv preprint arXiv:2411.02059, 2024.
|
78 |
张智雄, 刘欢, 于改红. 构建基于科技文献知识的人工智能引擎[J]. 农业图书情报学报, 2021, 33(1): 17-31.
|
|
ZHANG Z X, LIU H, YU G H. Building an artificial intelligence engine based on scientific and technological literature knowledge[J]. Journal of library and information science in agriculture, 2021, 33(1): 17-31.
|
79 |
SU H, CHEN R, TANG S, et al. Two heads are better than one: A multi-agent system has the potential to improve scientific idea generation[J/OL]. arXiv preprint arXiv:2410. 09403v2, 2024.
|
80 |
SCHMIDGALL S, SU Y S, WANG Z, et al. Agent laboratory: Using LLM agents as research assistants[J/OL]. arXiv preprint arXiv:2501.04227, 2025.
|
81 |
XI Z K, YIN W B, FANG J Z, et al. OmniThink: Expanding knowledge boundaries in machine writing through thinking[J/OL]. arXiv preprint arXiv:2501.09751, 2025.
|
82 |
KANG Y, KIM J. ChatMOF: An artificial intelligence system for predicting and generating metal-organic frameworks using large language models[J]. Nature communications, 2024, 15: 4705.
|
83 |
HAN S W, XIA P, ZHANG R Y, et al. MDocAgent: A multi-modal multi-agent framework for document understanding[J/OL]. arXiv preprint arXiv:2503.13964, 2025.
|
84 |
DENG C, YUAN J L, BU P, et al. LongDocURL: A comprehensive multimodal long document benchmark integrating understanding, reasoning, and locating[J/OL]. arXiv preprint arXiv:2412.18424, 2024.
|
85 |
ZHA L Y, ZHOU J L, LI L Y, et al. TableGPT: Towards unifying tables, nature language and commands into one GPT[J/OL]. arXiv preprint arXiv:2307.08674, 2023.
|
86 |
王译婧, 徐海静. 人工智能助力多模态档案资源开发的实现路径[J]. 山西档案, 2025(4): 120-126, 137.
|
|
WANG Y J, XU H J. Implementation paths for AI-assisted development of multimodal archival resources[J]. Shanxi archives, 2025(4): 120-126, 137.
|
87 |
王飞跃, 王雨桐. 数字科学家与平行科学: AI4S和S4AI的本源与目标[J]. 中国科学院院刊, 2024, 39(1): 27-33.
|
|
WANG F Y, WANG Y T. Digital scientists and parallel sciences: The origin and goal of AI for science and science for AI[J]. Bulletin of Chinese academy of sciences, 2024, 39(1): 27-33.
|
88 |
WANG H C, LIU C, XI N W, et al. HuaTuo: Tuning LLaMA model with Chinese medical knowledge[J/OL]. arXiv preprint arXiv:2304.06975, 2023.
|
89 |
BI Z, ZHANG N Y, XUE Y D, et al. OceanGPT: A large language model for ocean science tasks[J/OL]. arXiv preprint arXiv:2310.02031, 2023.
|
90 |
鲜国建, 罗婷婷, 赵瑞雪, 等. 从人工密集型到计算密集型: NSTL数据库建设模式转型之路[J]. 数字图书馆论坛, 2020(7): 52-59.
|
|
XIAN G J, LUO T T, ZHAO R X, et al. Research and practice of the NSTL database construction mode transformation: From labor intensive to computing intensive[J]. Digital library forum, 2020(7): 52-59.
|
91 |
王婷, 何松泽, 杨川. 知识图谱相关方法在脑科学领域的应用综述[J]. 计算机技术与发展, 2022, 32(11): 1-7.
|
|
WANG T, HE S Z, YANG C. An application review of knowledge graph related methods in field of human brain science[J]. Computer technology and development, 2022, 32(11): 1-7.
|
92 |
MALAS T B, VLIETSTRA W J, KUDRIN R, et al. Drug prioritization using the semantic properties of a knowledge graph[J]. Scientific reports, 2019, 9: 6281.
|
93 |
JARADEH M Y, OELEN A, PRINZ M, et al. Open research knowledge graph: A system walkthrough[M]//Digital Libraries for Open Knowledge. Cham: Springer International Publishing, 2019: 348-351.
|
94 |
萧文科, 宋驰, 陈士林, 等. 中医药大语言模型的关键技术与构建策略[J]. 中草药, 2024, 55(17): 5747-5756.
|
|
XIAO W K, SONG C, CHEN S L, et al. Key technologies and construction strategies of large language models for traditional Chinese medicine[J]. Chinese traditional and herbal drugs, 2024, 55(17): 5747-5756.
|
95 |
SWAIN M C, COLE J M. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature[J]. Journal of chemical information and modeling, 2016, 56(10): 1894-1904.
|
96 |
LAI P T, COUDERT E, AIMO L, et al. EnzChemRED, a rich enzyme chemistry relation extraction dataset[J]. Scientific data, 2024, 11: 982.
|
97 |
LIU Y, LIU D-H, GE X-Y, et al. A high-quality dataset construction method for text mining in materials science[J]. Acta physica sinica, 2023, 72(7): 070701.
|
98 |
ZHANG Y, WANG C, SOUKASEUM M, et al. Unleashing the power of knowledge extraction from scientific literature in catalysis[J]. Journal of chemical information and modeling, 2022, 62(14): 3316-3330.
|
99 |
RUBUNGO A N, LI K M, HATTRICK-SIMPERS J, et al. LLM4Mat-bench: Benchmarking large language models for materials property prediction[J/OL]. arXiv preprint arXiv:2411.00177, 2024.
|
100 |
TOSSTORFF A, RUDOLPH M G, COLE J C, et al. A high quality, industrial data set for binding affinity prediction: Performance comparison in different early drug discovery scenarios[J]. Journal of computer-aided molecular design, 2022, 36(10): 753-765.
|
101 |
孟小峰. 科学数据智能: 人工智能在科学发现中的机遇与挑战[J]. 中国科学基金, 2021, 35(3): 419-425.
|
|
MENG X F. Scientific data intelligence: AI for scientific discovery[J]. Bulletin of national natural science foundation of China, 2021, 35(3): 419-425.
|
102 |
高瑜蔚, 胡良霖, 朱艳华, 等. 国家基础学科公共科学数据中心建设与发展实践[J]. 科学通报, 2024, 69(24): 3578-3588.
|
|
GAO E G, HU L L, ZHU Y H, et al. Construction and practice of national basic science data center[J]. Chinese science bulletin, 2024, 69(24): 3578-3588.
|
103 |
邓仲华, 李志芳. 科学研究范式的演化: 大数据时代的科学研究第四范式[J]. 情报资料工作, 2013, 34(4): 19-23.
|
|
DENG Z H, LI Z F. The evolution of scientific research paradigm: The fourth paradigm of scientific research in the era of big data[J]. Information and documentation services, 2013, 34(4): 19-23.
|
104 |
包为民, 祁振强. 航天装备体系化仿真发展的思考[J]. 系统仿真学报, 2024, 36(6): 1257-1272.
|
|
BAO W M, QI Z Q. Thinking of aerospace equipment systematization simulation technology development[J]. Journal of system simulation, 2024, 36(6): 1257-1272.
|
105 |
李正风. 当代科学的新变化与科学学的新趋向[J]. 世界科学, 2024(8): 41-44.
|
|
LI Z F. New changes in contemporary science and new trends in science of science[J]. World science, 2024(8): 41-44.
|
106 |
The Fourth Paradigm: Data-Intensive Scientific Discovery[M]. Redmond, WA: Microsoft Research, 2009.
|
107 |
余江, 张越, 周易. 人工智能驱动的科研新范式及学科应用研究[J]. 中国科学院院刊, 2025, 40(2): 362-370.
|
|
YU J, ZHANG Y, ZHOU Y. A new scientific research paradigm driven by AI and its applications in academic disciplines[J]. Bulletin of Chinese academy of sciences, 2025, 40(2): 362-370.
|
108 |
于改红, 谢靖, 张智雄, 等. 基于DIKIW的智能情报服务理论及系统框架研究与实践[J/OL]. 情报理论与实践, 2025: 1-11.
|
|
YU G H, XIE J, ZHANG Z X, et al. Research and practice of intelligent information service theory and system framework based on DIKIW[J/OL]. Information studies: Theory & application, 2025: 1-11.
|
109 |
张智雄. 在开放科学和AI时代塑造新型学术交流模式[J]. 中国科技期刊研究, 2024, 35(5): 561-567.
|
|
ZHANG Z X. Shaping new models of scholarly communication in the era of open science and AI[J]. Chinese journal of scientific and technical periodicals, 2024, 35(5): 561-567.
|
110 |
钱力, 刘细文, 张智雄, 等. AI+智慧知识服务生态体系研究设计与应用实践: 以中国科学院文献情报中心智慧服务平台建设为例[J]. 图书情报工作, 2021, 65(15): 78-90.
|
|
QIAN L, LIU X W, ZHANG Z X, et al. Design and application of ecological system of intelligent knowledge service based on AI: An example of building of intelligent service platform of national science library, CAS[J]. Library and information service, 2021, 65(15): 78-90.
|
111 |
AMMAR W, GROENEVELD D, BHAGAVATULA C, et al. Construction of the literature graph in semantic scholar[J/OL]. arXiv preprint arXiv:1805.02262, 2018.
|
112 |
NI Z Q, LI Y H, HU K J, et al. MatPilot: An LLM-enabled AI materials scientist under the framework of human-machine collaboration[J/OL]. arXiv preprint arXiv:2411.08063, 2024.
|
113 |
WANG T R, HU J Y, OUYANG R H, et al. Nature of metal-support interaction for metal catalysts on oxide supports[J]. Science, 2024, 386(6724): 915-920.
|
114 |
FÉBBA D, EGBO K, CALLAHAN W A, et al. From text to test: AI-generated control software for materials science instruments[J]. Digital discovery, 2025, 4(1): 35-45.
|
115 |
周力虹. 面向驱动AI4S的科学数据聚合: 需求、挑战与实现路径[J]. 农业图书情报学报, 2023, 35(10): 13-15.
|
|
ZHOU L H. Scientific data aggregation for driving AI4S: Requirements, challenges and implementation paths[J]. Journal of library and information science in agriculture, 2023, 35(10): 13-15.
|
116 |
叶悦. AI大模型时代出版内容数据保护的理据与进路[J]. 出版与印刷, 2025(1): 27-36.
|
|
YE Y. The rationale and approach for data protection of published contents in the era of AI big models[J]. Publishing & printing, 2025(1): 27-36.
|
117 |
QU Y Y, DING M, SUN N, et al. The frontier of data erasure: Machine unlearning for large language models[J/OL]. arXiv preprint arXiv:2403.15779, 2024.
|