中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (7): 63-75.doi: 10.13998/j.cnki.issn1002-1248.24-0447

Previous Articles     Next Articles

Innovation and Risk Avoidance of Smart Library Services Based on Generative Artificial Intelligence

Jia LIU   

  1. Nanjing Library, Jiangsu 210018
  • Received:2024-06-07 Online:2024-07-05 Published:2024-11-26

Abstract:

[Purpose/Significance] With the rapid advancement of information technology, library services are undergoing transformative changes. The emergence of generative artificial intelligence (Generative AI) presents unprecedented opportunities and challenges for innovation in smart library services. By enhancing service efficiency and user experience, generative AI supports core library functions, such as personalized recommendations, intelligent question answering, and automatic summarization. This research explores the implications of applying generative AI technology to library services, with the goal of understanding its transformative impact on the field and addressing its potential risks. Unlike traditional studies that focus primarily on functionality, this study emphasizes the ethical, technical, and management risks associated with the use of generative AI in libraries. The study occupies an important place in the advancement of knowledge in this area and contributes to the development of sustainable, user-centered library services capable of addressing significant contemporary challenges related to information accessibility and data security. [Method/Process] This study uses a systematic literature review and case analysis to examine the current state of generative AI applications in smart libraries. A comprehensive approach is taken to understand how generative AI can enhance library services in areas such as personalized recommendation systems, intelligent Q&A, and automated summarization. The study draws on both theoretical and empirical sources, utilizing qualitative analysis to examine trends in the use of generative AI in different types of library services. This review also includes a thorough examination of the potential risks associated with implementing these technologies. Technical risks include data security vulnerabilities and model bias, while ethical risks focus on the issues surrounding user privacy, misinformation, and intellectual property rights. Management risks are also discussed, including the challenges of maintaining system stability and ensuring regulatory compliance. The multi-dimensional risk framework developed in this study provides a robust structure for analyzing these complex challenges and serves as a foundation for future empirical research in smart library applications. [Results/Conclusions] The research reveals that while generative AI can significantly improve the quality of library services and user satisfaction, it also poses significant risks. These include challenges related to data security, model bias, ethical standards, and management complexity. To address these, the study proposes a number of risk mitigation strategies. Key recommendations include strengthening data security through advanced encryption and access controls, increasing model transparency to build user confidence, and ensuring system stability through rigorous testing and monitoring. In addition, the study advocates for the establishment of ethical guidelines that prioritize user privacy, transparency, and content accuracy. It also underscores the need for ongoing regulatory adjustments to keep pace with technological advances. The study concludes by identifying limitations, such as the lack of quantitative data and real-time experiments, and suggests areas for future research. Future studies should focus on empirically validating the proposed framework, exploring the long-term impact of generative AI on library services, and developing best practices for balancing innovation with ethical responsibility. The continued evolution of generative AI is likely to deepen its integration with smart libraries, enabling innovative service models that meet the diverse and dynamic needs of users while safeguarding against potential risks. This research provides a foundational reference for library managers and policymakers seeking to implement generative AI responsibly and sustainably, and to promote the progressive transformation of library services in the information age.

Key words: personalized recommendation service, generative artificial intelligence, smart library, user satisfaction, data analysis

CLC Number: 

  • G250.7

Table 1

The development history of generative artificial intelligence"

阶段 时间 主要技术与进展 应用领域
初期发展 20世纪80年代 统计模型与概率图模型的研究 限于理论研究,实际应用有限
近代进展 21世纪初 深度学习技术的发展 推动生成模型在多个领域的应用
生成对抗网络(GANs) 2014年 极大提升生成模型的性能 图像生成、文本生成
最新动态 近年 GPT系列模型、大规模预训练与微调 文本生成、图像生成、视频生成、音频生成

Table 2

Application of generative artificial intelligence in various fields"

应用领域 具体任务 技术方法 应用实例
计算机视觉 图像生成、图像修复、风格迁移 生成对抗网络(GANs) DeepArt,将普通照片转换为艺术风格[12]
超分辨率图像重建 生成对抗网络(GANs)、变分自编码器(VAEs) SRGAN,用于提升图像分辨率[13]
图像去噪 变分自编码器(VAEs) 使用VAEs消除图像噪点[14]
自然语言处理 文本生成、对话系统、自动摘要 GPT系列模型 提升机器翻译、问答系统性能[15]
自动文本校对与编辑 自回归模型(Transformer) 使用Transformer进行自动文本校对[16]
语言翻译 GPT系列模型、Transformer 自动翻译多种语言文本
医疗健康 药物设计 生成对抗网络(GANs) 生成新化合物结构用于药物发现[17]
医学影像生成、图像质量增强 生成对抗网络(GANs)、变分自编码器(VAEs) 增强医学影像质量,辅助医生进行诊断[18]
疾病预测 生成对抗网络(GANs)、变分自编码器(VAEs) 模拟患者数据,预测疾病发展趋势[19]
其他应用领域 音乐生成 生成对抗网络(GANs) 使用GANs生成新的音乐作品[20]
游戏内容生成 生成对抗网络(GANs)、自回归模型 生成游戏中的新关卡和角色[21]
市场营销 生成对抗网络(GANs)、GPT系列模型 生成个性化的广告文案和市场分析报告[22]
虚拟现实和增强现实内容生成 生成对抗网络(GANs)、变分自编码器(VAEs) 生成逼真的虚拟现实和增强现实内容

Table 3

Main applications of generative artificial intelligence in smart libraries"

应用领域 具体任务 技术方法 实际应用示例
书籍推荐系统 个性化书籍推荐 生成对抗网络(GANs) 通过分析用户的阅读历史、兴趣爱好和行为数据,生成个性化的书籍推荐列表
捕捉用户潜在兴趣 GANs生成虚拟行为数据 提升推荐系统的性能和鲁棒性
智能问答系统 图书馆资源咨询 GPT3等大规模语言模型 用户与图书馆系统的自然语言交互
服务使用方法的问答 自然语言处理(NLP) 提供即时、准确的回答
数据挖掘与知识发现 阅读趋势分析 生成式模型、深度学习模型 识别用户的阅读趋势和热点话题
馆藏资源深度挖掘 数据挖掘 优化资源配置和服务策略
知识图谱生成 生成式人工智能技术 自动生成知识图谱,提升知识管理能力

Table 4

Innovative service cases based on generative artificial intelligence"

应用领域 案例 技术方法 具体任务 实际效果
个性化推荐服务 北京大学图书馆 生成对抗网络(GANs) 分析用户阅读历史和兴趣偏好,生成个性化推荐列表 提升用户满意度和图书借阅率
哈佛大学图书馆 机器学习,生成式人工智能 根据借阅历史和学术兴趣,推荐相关书籍和期刊 帮助学生和研究人员快速找到相关文献,提高学术效率
台湾大学图书馆 深度学习 分析用户阅读模式和行为,提供个性化推荐 提升用户阅读体验和满意度
自动摘要与翻译服务 上海图书馆 变分自编码器(VAEs),GPT-3 自动生成文献摘要,多语言翻译 用户快速了解文献内容,提升信息获取能力和效率
剑桥大学图书馆 生成式人工智能技术 为研究人员提供文献自动摘要服务,多语言翻译支持 帮助研究人员快速筛选文献,提升文献可访问性
东京大学图书馆 深度学习模型 实时生成文献摘要,并翻译成指定语言 方便国际学生和研究人员获取信息,提升学术研究效率
虚拟助理与聊天机器人 南京大学图书馆 GPT-3,自然语言处理 提供图书馆服务咨询和个性化服务建议 提升用户服务体验,减轻图书馆工作人员负担
斯坦福大学图书馆 语音识别,自然语言处理 帮助用户进行资源搜索和借阅,解答常见问题 提升自助服务能力,减轻工作人员负担
德国国家图书馆 生成式人工智能技术 提供咨询服务,回答用户问题,推荐相关书籍 提升服务效率和用户满意度

Table 5

SWOT analysis in generative artificial intelligence applications"

SWOT要素 风险类型 具体要素 详细描述
技术风险 数据安全与隐私保护 数据泄露风险 生成式人工智能依赖大量用户数据,可能面临数据泄露风险
模型偏差与公平性 数据偏差 数据不均衡可能导致推荐系统偏差,忽视用户多样化需求
技术稳定性与可靠性 系统稳定性 系统不稳定可能降低用户的信任感
伦理风险 信息操控与误导 虚假信息 生成虚假内容可能误导用户,影响社会安全
版权与知识产权 版权问题 生成内容可能侵犯版权,导致侵权纠纷
人机交互的伦理问题 情感依赖 用户对虚拟助理的依赖可能影响心理健康
管理与政策风险 法律法规适应性 法律法规滞后性 现有法规未完全覆盖生成式人工智能带来的新问题
管理与运营风险 技术管理与维护 技术管理不当可能导致服务中断和安全事故
用户隐私与数据保护政策 用户隐私风险 用户数据隐私保护不力可能导致严重的法律风险
1
CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE signal processing magazine, 2018, 35(1): 53-65.
2
KUSNER M J, PAIGE B, HERNÁNDEZ-LOBATO J M. Grammar variational autoencoder[J/OL]. arXiv, 2017: 1703.01925.
3
WONG C S, LI W K. On a mixture autoregressive model[J]. Journal of the royal statistical society: Series B (statistical methodology), 2000, 62(1): 95-115.
4
BLACK S, BIDERMAN S, HALLAHAN E, et al. GPT-NeoX-20B: An open-source autoregressive language model[J/OL]. arXiv, 2022.
5
DENG L. Artificial intelligence in the rising wave of deep learning: The historical path and future outlook[perspectives[J]. IEEE signal processing magazine, 2018, 35(1): 180-177.
6
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
7
KUBLIK S, SABOO S. Gpt-3 The Ultimate Guide to Building NLP Products with OpenAI API[M]. Birmingham: Packt Publishing, Limited, 2023.
8
JABBAR A, LI X, OMAR B. A survey on generative adversarial networks: Variants, applications, and training[J]. ACM computing surveys, 2022, 54(8): 1-49.
9
SHAHADE K, DESHMUKH V. The role of generative ai in natural language processing applications[J]. International journal of computing and digital systems, 2024, 17(1): 1-10.
10
JIN L C, TAN F X, JIANG S M. Generative adversarial network technologies and applications in computer vision[J]. Computational intelligence and neuroscience, 2020, 2020(1): 1459107.
11
GANGWAL A, ANSARI A, AHMAD I, et al. Generative artificial intelligence in drug discovery: Basic framework, recent advances, challenges, and opportunities[J]. Frontiers in pharmacology, 2024, 15: 1331062.
12
Sagar, VISHWAKARMA D K. A state-of-the-arts and prospective in neural style transfer[C]//2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). Piscataway, New Jersey: IEEE, 2019: 244-247.
13
NAGANO Y, KIKUTA Y. SRGAN for super-resolving low-resolution food images[C]//Proceedings of the Joint Workshop on Multimedia for Cooking and Eating Activities and Multimedia Assisted Dietary Management. New York: ACM, 2018: 33-37.
14
ANEJA J, SCHWING A, KAUTZ J, et al. A contrastive learning approach for training variational autoencoder priors[J/OL]. arXiv, 2020: 2010.02917.
15
ZHOU G Y, LIU F, LIU Y, et al. Statistical machine translation improves question retrieval in community question answering via matrix factorization[C]. ACL 2013 - 51st Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 2013, 1: 852-861.
16
LIU J L, LUO X D. A BERT-based model for Legal document proofreading[M]//SHI Z Z, TORRESEN J, YANG S X, eds. IFIP Advances in Information and Communication Technology. Cham: Springer Nature Switzerland, 2024: 190-206.
17
LIN E, LIN C H, LANE H Y. Relevant applications of generative adversarial networks in drug design and discovery: Molecular De novo design, dimensionality reduction, and De novo peptide and protein design[J]. Molecules, 2020, 25(14): 3250.
18
RAIS K, AMROUNE M, HAOUAM M Y. Medical image generation techniques for data augmentation: Disc-VAE versus GAN[C]//2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS). Piscataway, New Jersey: IEEE, 2024: 1-8.
19
AHMAD B, SUN J, YOU Q, et al. Brain tumor classification using a combination of variational autoencoders and generative adversarial networks[J]. Biomedicines, 2022, 10(2): 223.
20
YANG L C, CHOU S Y, YANG Y H. MidiNet: A convolutional generative adversarial network for symbolic-domain music generation[J/OL]. arXiv, 2017.
21
RODRIGUEZ TORRADO R, KHALIFA A, CERNY GREEN M, et al. Bootstrapping conditional GANs for video game level generation[C]//2020 IEEE Conference on Games (CoG). Piscataway, New Jersey: IEEE, 2020: 41-48.
22
DIMITRIESKA S. Generative artificial intelligence and advertising[J]. Trends in economics, finance and management journal, 2024, 6(1): 23-34.
23
苗逢春. 生成式人工智能技术原理及其教育适用性考证[J]. 现代教育技术, 2023, 33(11): 5-18.
MIAO F C. Examination of the technique principle of generative AI and its educational applicability[J]. Modern educational technology, 2023, 33(11): 5-18.
24
VASUDEVAN R K, CHOUDHARY K, MEHTA A, et al. Materials science in the artificial intelligence age: High-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics[J]. MRS communications, 2019, 9(3): 821-838.
25
Encyclopedia of library and information science: Volume 30 – Taiwan: Library services and development in the Republic of China to Toronto: University of Toronto faculty of library science[M]. New York: CRC Press, 1980.
26
储节旺, 陈梦蕾. 人工智能驱动图书馆变革[J]. 大学图书馆学报, 2019, 37(4): 5-13.
CHU J W, CHEN M L. Artificial intelligence driven library transformation[J]. Journal of academic libraries, 2019, 37(4): 5-13.
27
KHAN R, GUPTA N, SINHABABU A, et al. Impact of conversational and generative AI systems on libraries: A use case large language model (LLM)[J]. Science & technology libraries, 2023: 1-15.
28
TAKESHITA S, GREEN T, FRIEDRICH N, et al. Cross-lingual extreme summarization of scholarly documents[J]. International journal on digital libraries, 2024, 25(2): 249-271.
29
SKREBECA J, KALNIETE P, GOLDBERGS J, et al. Modern development trends of chatbots using artificial intelligence (AI)[C]//2021 62nd International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). Piscataway, New Jersey: IEEE, 2021: 1-6.
30
LIU M, REN Y L, NYAGOGA L M, et al. Future of education in the era of generative artificial intelligence: Consensus among Chinese scholars on applications of ChatGPT in schools[J]. Future in educational research, 2023, 1(1): 72-101.
31
AUSTERJOST J, PORR M, RIEDEL N, et al. Introducing a virtual assistant to the lab: A voice user interface for the intuitive control of laboratory instruments[J]. SLAS technology, 2018, 23(5): 476-482.
32
LI X. Corpus exploration and dialogue system design for a virtual librarian[D]. Gothenburg: University of Gothenburg, 2020.
[1] Mo LI, Bin YANG. From Generative Artificial Intelligence to Artificial General Intelligence: Enabling Innovation Models in Library Knowledge Services [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 50-61.
[2] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 36-50.
[3] FU Rongxin, YANG Xiaohua. Analysis of AIGC Language Models and Application Scenarios in University Libraries [J]. Journal of Library and Information Science in Agriculture, 2023, 35(7): 27-38.
[4] Guo Limin. The Practice and Enlightment of Cloud Collaboration in Libraries: A Case Study of the Mobile Library App of Shanghai Library [J]. Journal of Library and Information Science in Agriculture, 2023, 35(6): 93-102.
[5] MA Lecun, ZHAN Xini, ZHU Qiyu, SUN Rong, LI Baiyang. Digital Intelligence Integration Innovation Development of GLAM Driven by AIGC [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 4-15.
[6] YANG Xiaofei, KONG Yuefan, SUN Jipu. Design and Analysis of a Blockchain Security Framework Model for Smart Libraries [J]. Journal of Library and Information Science in Agriculture, 2023, 35(4): 79-89.
[7] XIAO Zheguang, ZHANG Lanlan, ZHANG Yi. Core Librarian Literacy of Smart Libraries and Its Training Path [J]. Journal of Library and Information Science in Agriculture, 2023, 35(2): 77-86.
[8] MENG Jing, TANG Yan. Analysis and Research Progress of Global Patent Technology of Wheat Genetics and Breeding [J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 93-103.
[9] GUO Weijia. Influencing Factors of Artificial Intelligence Readiness in Libraries [J]. Journal of Library and Information Science in Agriculture, 2022, 34(5): 47-56.
[10] HUANG Haijing, ZHU Lili, LIU Weiyan, HUANG Bingjie. Analysis of Academic Libraries' Transformation Driven by Smart Libraries: Taking Library of Zhejiang University City College as an Example [J]. Journal of Library and Information Science in Agriculture, 2022, 34(2): 102-113.
[11] CHENG Xingru, KANG Yuli, MENG Ziyun, LI Nan, TANG Qiaoling, WANG Youhua. Progress Analysis and Prospects of Bt Gene Research and Development Based on Global Patents [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 81-91.
[12] QI Jing. Application Scenario Construction of the University Metaverse Libraries [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 69-80.
[13] MA Xiaocui, CAO Ningxin. Construction and Promotion Path of Public Library Service Capacity in the Smart Library Era [J]. Journal of Library and Information Science in Agriculture, 2022, 34(11): 48-56.
[14] WEN Liqing. Knowledge Graph Enabled Reading Promotion Research [J]. Journal of Library and Information Science in Agriculture, 2021, 33(8): 63-70.
[15] HUANG Minli, ZHENG Cong, ZHENG Ting. 24-Hour Self-Service Architecture of Smart Libraries and Its Implementation [J]. Journal of Library and Information Science in Agriculture, 2021, 33(2): 83-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!