中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (3): 66-80.doi: 10.13998/j.cnki.issn1002-1248.25-0032

Previous Articles     Next Articles

Influencing Factors of Continuous Use Intention of "Generation Z" Users of an AIGC Platform

GOU Ruike, LUO Wei   

  1. School of Public Administration, Xiangtan University, Xiangtan 411105
  • Received:2025-01-20 Online:2025-03-05 Published:2025-06-10

Abstract:

[Purpose/Significance] The proliferation of generative artificial intelligence (AIGC) platforms has ushered in a transformative era for content creation. However, the industry is facing significant challenges due to technological homogenization. Platforms struggle to retain users, particularly Generation Z (those born between 1995 and 2009), due to standardized architectures, overlapping data sources, and repetitive training methodologies. Generation Z exhibits low loyalty and high migration tendencies. They are digital natives whose behaviors are shaped by unique socio-technological traits. They prioritize immersive experiences, thrive in circle culture, and rely heavily on peer-driven decision-making. However, existing studies primarily focus on generic user groups, and the ways in which these distinct characteristics influence sustained engagement with AIGC tools. This research bridges the gap by integrating the Stimulus-Organism-Response (SOR) framework with Generation Z's behavioral patterns, creating a new theoretical model that explains their constant usage intentions. These findings advance the theoretical discourse on user behavior in AI-driven ecosystems. They also offer actionable strategies for platforms to differentiate themselves in a user-centric way. This addresses critical challenges in an increasingly saturated market. [Method/Procedure] Guided by the Stimulus-Organism-Response (SOR) theoretical framework, this study proposed a model to examine the impact of xternal stimuli, such as circle influence, online word-of-mouth, and platform quality on continuous usage intention, as mediated by satisfaction and immersive experience., Individual innovativeness is considered to be a moderating factor. Data were collected via an online questionnaire distributed to 356 Gen Z users with experience using AIGC platforms. A 7-point Likert scale was used to measure constructs. Structural equation modeling (SEM) was employed to test the hypothesized relationships, including reliability and validity checks, as well as mediation effect, and moderation analyses. [Results/Conclusions] The findings reveal that circle influence, online word-of-mouth, and platform quality have a significant and positive impact on user satisfaction and immersive experience, These factors then mediate the relationship with continuous usage intention. Among these factors, circle influence demonstrates the strongest effect on satisfaction, highlighting Gen Z's social identity and dependence on their peers. Although platform quality is less dominant than social and reputational factors, it remains a foundational driver of user experience. It was found that individual innovativeness positively moderates the relationship between immersive experience and continuous usage intention. This indicates that users with higher innovativeness derive greater satisfaction from interactive experiences, which enhances their loyalty. However, no significant moderating effect of individual innovativeness was observed between satisfaction and continuous usage intention. Accordingly, the following suggestions are put forward to promote users' continuous usage intention. These suggestions include optimizing online word-of-mouth, strengthening circle operation, and enhancing the guidance of innovativeness. Future research could focus on exploring the differences in continuous usage intention among different types of AIGC platforms for Generation Z. Additionally, the model of influencing factors could be further refined to consider more complex real-world scenarios.

Key words: Generation Z, generative artificial intelligence platform, stimulus-organic-response model, user willingness to continue using, information behavior

CLC Number: 

  • G252.0

Fig.1

Research model"

Table 1

Variables and measurement items"

变量测量题项参考来源
网络口碑(IW)

IW1:网上对AIGC平台的关注度很高

IW2:近期我看到过很多针对AIGC平台的口碑信息

IW3:该网络口碑内容客观、公正地描述了AIGC平台的相关信息

IW4:AIGC平台有大量正面口碑时,我会选择继续使用该平台

刘筱婷[58]
平台质量(PQ)

PQ1:AIGC平台提供的信息准确且全面

PQ2:AIGC平台提供的信息能满足我的需求

PQ3:AIGC平台的系统能可靠且稳定地运行

PQ4:在AIGC平台遇到使用问题时平台能及时响应并解决

PARASURAMAN等[59]

李睿智等[60]

姜文博等[61]

圈层影响(SI)

SI1:我信任圈层中共享的信息

SI2:圈层中的好友们希望我使用AIGC平台

SI3:基于圈层中的见闻,我被鼓励去使用AIGC平台

张长亮[53]

赵宇翔等[62]

谭春辉等[63]

沉浸体验(IE)

IE1:我认为在AIGC平台上与机器以自然语言交流互动很有趣

IE2:AIGC平台上依据我的想法生成的信息、图像等很有意思

IE3:我在AIGC平台上查找信息时,我感觉到了探索的兴奋

孙祺宇等[56]
满意度(S)

S1:AIGC平台的体验使我感到愉悦

S2:我认为使用AIGC平台的服务是明智的选择

S3:AIGC平台基本满足我的需求,整体上感觉十分满意

BHATTACHERJEE[9]
个体创新性(ID)

ID1:我很乐于接受新事物和新观点

ID2:我很乐意去尝试新的技术/产品/服务

ID3:我通常比周围的人更先尝试新技术/新产品

ID4:使用AIGC平台使我觉得好奇新鲜

石婷婷[64]
持续使用意愿(CI)

CI1:未来我打算继续使用AIGC平台

CI2:未来我会保持目前频率甚至增加频率使用AIGC平台

CI3:我愿意向身边的人推荐使用AIGC平台

BHATTACHERJEE[9]

谭春辉等[63]

Table 2

Demographic characteristics"

类别选项人数/人比例/%
性别17047.75
18652.25
出生年份1995年以前154.21
1995—2000年7521.07
2001—2005年12936.24
2006—2009年12835.96
2009年以后92.53
学历高中及以下14440.45
专科6016.85
本科9125.56
硕士4813.48
博士133.65
使用历史3个月以内8724.44
3个月到半年13537.92
半年到一年9827.53
一年到两年3610.11
使用频率每周1次甚至更少267.30
每周2~3次8022.47
每周4~6次15042.13
每周6次以上10028.09
每次使用时长少于30分钟318.71
0.5~1小时12033.71
1~2小时14340.17
2~3小时3610.11
3小时以上267.30

Table 3

Reliability and validity analysis"

潜变量题项标准化载荷克隆巴赫(α)CRAVE
圈层影响SI10.8160.8770.8770.640
SI20.783
SI30.795
SI40.806
网络口碑IW10.7800.8740.8740.634
IW20.802
IW30.773
IW40.829
平台质量PQ10.7890.8700.8700.626
PQ20.809
PQ30.751
PQ40.815
个体创新性PI10.7970.8610.8610.608
PI20.756
PI30.781
PI40.785
沉浸体验IE10.7930.8750.8320.623
IE20.794
IE30.780
满意度S10.7820.8320.8760.638
S20.801
S30.787
S40.824
持续使用意愿CI10.8050.8840.8840.657
CI20.808
CI30.830
CI40.798

Table 4

Differential validity detection"

变量CISIEPIPQIWSI
CI0.810
S0.5030.799
IE0.5000.4660.789
PI0.4770.4580.4330.780
PQ0.4890.460.4260.4470.791
IW0.5010.4980.4470.4650.5380.796
SI0.4970.4910.4410.4490.4640.4550.800

Table 5

Model fitting coefficient"

X2/dfRMSEAGFIAGFICFIIFITLI
1.3340.0310.9300.9120.9840.9840.981

Fig.2

Standardized path analysis"

Table 6

Model path coefficients and hypothesis testing results"

研究假设作用关系标准化影响因素S.E.C.R.P是否成立
H1a圈层影响显著正向影响用户满意度0.2900.0674.140***
H1b圈层影响显著正向影响用户的沉浸体验0.2600.0683.461***
H2a网络口碑显著正向影响用户满意度0.2800.0654.630***
H2b网络口碑显著正向影响用户的沉浸体验0.2500.0663.894***
H3a平台质量显著正向影响用户满意度0.2000.0702.8660.004
H3b平台质量显著正向影响用户的沉浸体验0.2000.0722.700.007
H4满意度显著正向影响用户的持续使用意愿0.3700.0585.972***
H6沉浸体验显著正向影响用户的持续使用意愿0.3700.0625.791***

Table 7

Path coefficients of the intermediary effect model"

假设中介路径效应值S.E.LowerUpperP
H5圈层影响-满意度-持续使用意愿0.0420.0170.0150.0820.002
网络口碑-满意度-持续使用意愿0.0390.0160.0130.0790.002
平台质量-满意度-持续使用意愿0.0300.0130.0100.0630.003
H7圈层影响-沉浸体验-持续使用意愿0.0400.0150.0160.077***
网络口碑-沉浸体验-持续使用意愿0.0380.0150.0150.075***
平台质量-沉浸体验-持续使用意愿0.0320.0140.0100.0660.001

Table 8

Adjustment variable detection"

假设路径描述相关系数S.E.C.R.P是否支持
H8a满意度*个体创新性->持续使用意愿0.0800.0431.8560.063不支持
H8b沉浸体验*个体创新性->持续使用意愿0.1360.0433.1640.002支持
1 张海, 段荟, 王东波. 信息资源管理领域生成式人工智能: 研究现状、研究主题及研究展望[J]. 情报杂志, 2024, 43(10): 150-156.
ZHANG H, DUAN H, WANG D B. Artificial intelligence generative content in information resource management: Research status, research topics and research prospect[J]. Journal of intelligence, 2024, 43(10): 150-156.
2 艾瑞咨询. 中国生成式人工智能(AIGC)行业发展研究报告[EB/OL]. [2024-09-12]. .
3 中国网信网. 生成式人工智能服务管理暂行办法[EB/OL]. [2024-09-12]. .
4 张智雄, 曾建勋, 夏翠娟, 等. 回应AIGC的信息资源管理学人思考[J]. 农业图书情报学报, 2023, 35(1): 4-25.
ZHANG Z X, ZENG J X, XIA C J, et al. Information resource management researchers' thinking about the opportunities and challenges of AIGC[J]. Journal of library and information science in agriculture, 2023, 35(1): 4-25.
5 中国发展改革网. 《2024Z世代AIGC态度报告》发布, 三分之一的年轻人愿意和AI做朋友[EB/OL]. [2024-09-13]. .
6 陈杰. 洞察“Z世代” 消费趋势[J]. 知识经济, 2019(26): 66-69.
CHEN J. Insight into the consumption trend of "Z generation"[J]. Knowledge economy, 2019(26): 66-69.
7 QuestMobile研究院. Z世代洞察报告[EB/OL]. [2024-09-14]. .
8 DAVIS F D. Perceived usefulness, perceived ease of use, and user acceptance of information technology[J]. MIS quarterly, 1989, 13(3): 319.
9 BHATTACHERJEE A. Understanding information systems continuance: An expectation-confirmation model[J]. MIS quarterly, 2001, 25(3): 351.
10 HSU M H, CHIU C M, JU T L. Determinants of continued use of the WWW: An integration of two theoretical models[J]. Industrial management & data systems, 2004, 104(9): 766-775.
11 刘佳静, 匡莉, 潘婕, 等. 省级公共文化云微信用户持续使用意愿研究[J]. 图书馆杂志, 2022, 41(7): 47-57.
LIU J J, KUANG L, PAN J, et al. Research on users' continuance intention for provincial public cultural cloud WeChat[J]. Library journal, 2022, 41(7): 47-57.
12 郭财强, 明均仁. 移动图书馆用户持续使用意愿整合模型及其实证研究[J]. 现代情报, 2020, 40(9): 79-89.
GUO C Q, MING J R. Integrated model and empirical study on users' continuous usage willingness of mobile library[J]. Journal of modern information, 2020, 40(9): 79-89.
13 孟猛,朱庆华.移动视觉搜索用户体验模型构建与实证研究[J].图书情报工作,2022,66(5):80-92.
MENG M, ZHU Q H. Construction and empirical research on mobile visual search user experience model[J]. Library and information service, 2022,66(5):80–92.
14 SAXENA A, DOLECK T. A structural model of student continuance intentions in ChatGPT adoption[J]. Eurasia journal of mathematics, science and technology education, 2023, 19(12): em2366.
15 熊强, 李文元, 陈晓燕, 等. 在线教学平台交互性、体验价值和持续使用意愿的关系研究: 一个有调节的中介效应[J]. 管理评论, 2022, 34(6): 153-161.
XIONG Q, LI W Y, CHEN X Y, et al. Research on the relationship among interaction, experience value and user stickiness of online teaching platform: A moderated mediation effect model[J]. Management review, 2022, 34(6): 153-161.
16 张嵩, 王安娜, 陈昊. 冷漠依赖与沉浸体验: 移动短视频用户持续使用意愿研究[J]. 图书情报工作, 2022, 66(14): 89-100.
ZHANG S, WANG A N, CHEN H. Apathy dependence and immersive experience: Research on the users' continuous use intention of mobile short video APPs[J]. Library and information service, 2022, 66(14): 89-100.
17 贺莉. Z世代: 缘起、特征与影响[EB/OL]. [2024-09-13]. .
18 ROSLI M S, SALEH N S, MD ALI A, et al. Factors determining the acceptance of E-wallet among gen Z from the lens of the extended technology acceptance model[J]. Sustainability, 2023, 15(7): 5752.
19 WIANGKHAM A, KIEANWATANA K, VONGVIT R. A comparative study of baby boomers and gen Z on virtual reality adoption for travel intentions: A PLS-MGA and GRNN model[J]. International journal of human–computer interaction, 2024: 1-22.
20 栗蕊蕊, 王淼. Z世代大学生网络社交: 行为特征与引导策略[J]. 思想理论教育, 2024(7): 107-111.
LI R R, WANG M. Social networking of generation Z college students: Behavior characteristics and guidance strategies[J]. Ideological & theoretical education, 2024(7): 107-111.
21 张潇月. “副号即隐私”: Z世代用户社交媒体信息发布行为特点研究[J]. 情报资料工作, 2024, 45(3): 60-69.
ZHANG X Y. Alternate account is privacy: Research on the features of generation Z users social media information posting behaviors[J]. Information and documentation services, 2024, 45(3): 60-69.
22 杨宇辰. Z世代网络互动仪式的生成机制分析[J]. 中国特色社会主义研究, 2024, 15(3): 105-113.
YANG Y C. Analysis on generative mechanism of generation Z's online interactive ceremony[J]. Studies on socialism with Chinese characteristics, 2024, 15(3): 105-113.
23 刘蒙之, 王麓乔, 张瑞杰. “Z世代”群体道德消费行为的影响因素与态度-行为差距成因分析[J]. 中国青年研究, 2023(10): 55-62.
LIU M Z, WANG L Q, ZHANG R J. Influencing factors of moral consumption behavior of generation Z group and analysis of attitude-behavior gap[J]. China youth study, 2023(10): 55-62.
24 张铮, 刘晨旭. 建构数字自我意识: “Z世代”青年数字形象消费中的新认同实践[J]. 福建论坛(人文社会科学版), 2023(8): 30-39.
ZHANG Z, LIU C X. Constructing digital self-consciousness: New identity practice in digital image consumption of generation Z youth[J]. Fujian tribune, 2023(8): 30-39.
25 刘森林. “装在盒子里的人”: “Z世代”盲盒消费景观及其形成机制[J]. 中国青年研究, 2022(2): 78-84.
LIU S L. People in a box: Blind box consumption landscape and its formation mechanism of Z generation[J]. China youth study, 2022(2): 78-84.
26 中国人工智能学会. 人工智能生成内容(AIGC)白皮书(2022年)[EB/OL]. [2024-09-12]. .
27 赵瑞雪,黄永文,马玮璐,等.ChatGPT对图书馆智能知识服务的启示与思考[J].农业图书情报学报,2023,35(1):29-38.
ZHAO R X, HUANG Y W, MA W L, et al. Insights and reflections of the impact of ChatGPT on intelligent knowledge services in libraries[J]. Journal of library and information science in agriculture, 2023, 35(1): 29-38.
28 Bahroun Z, Anane C, Ahmed V,et al.Transforming education:A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis[J].Sustainability,2023,15(17):12983.
29 BAHROUN Z, ANANE C, AHMED V, et al. Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis[J]. Sustainability, 2023, 15(17): 12983.
30 LUND B D, WANG T, MANNURU N R, et al. ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing[J]. Journal of the association for information science and technology, 2023, 74(5): 570-581.
31 SAM S. Early applications of ChatGPT in medical practice, education and research[J]. Clinical medicine, 2023, 23(3): 278-279.
32 LO L S. The CLEAR path: A framework for enhancing information literacy through prompt engineering[J]. The journal of academic librarianship, 2023, 49(4): 102720.
33 孙鹏, 王宇, 刘新勇. ChatGPT赋能图书馆: 现实基础、逻辑方向与应用场景[J]. 情报资料工作, 2024, 45(5): 100-106.
SUN P, WANG Y, LIU X Y. Empowering libraries with chat GPT: Realistic foundation, logical direction and application scenarios[J]. Information and documentation services, 2024, 45(5): 100-106.
34 杨晶晶. 生成式人工智能在档案数字场景中的应用研究[J]. 浙江档案, 2024(1): 45-47, 54.
YANG J J. Research on application of Generative Artificial Intelligence in archive digital scene[J]. Zhejiang archives, 2024(1): 45-47, 54.
35 陈凯泉, 胡晓松, 韩小利, 等. 对话式通用人工智能教育应用的机理、场景、挑战与对策[J]. 远程教育杂志, 2023, 41(3): 21-41.
CHEN K Q, HU X S, HAN X L, et al. The mechanism, scenarios, challenges and countermeasure of conversational artificial general intelligence in education[J]. Journal of distance education, 2023, 41(3): 21-41.
36 熊皓舒, 王鐾璇, 侯健, 等. 生成式人工智能(AI)在中药智能制造及供应链中的应用场景设计与展望[J]. 中国中药杂志, 2024, 49(14): 3963-3970.
XIONG H S, WANG B X, HOU J, et al. Application scenario design and prospect of generative artificial intelligence (AI) in intelligent manufacturing and supply chain of traditional Chinese medicine[J]. China journal of Chinese materia Medica, 2024, 49(14): 3963-3970.
37 张海,段荟,孔晔晗.高校图书馆用户未来学习中心采纳意愿影响因素研究[J].国家图书馆学刊,2024,33(3):49-58.
ZHANG H, DUAN H, KONG Y H. Research on influencing factors of users, adoption intention of future learning centers in academic libraries[J]. Journal of the national library of China, 2024, 33(3): 49-58.
38 周涛, 张春雷, 邓胜利. 基于C-A-C的生成式AI用户间歇性中辍行为研究[J]. 现代情报, 2025, 45(3): 40-50, 64.
ZHOU T, ZHANG C L, DENG S L. Research on generative AI users' intermittent discontinuance based on the C-A-C[J]. Journal of modern information, 2025, 45(3): 40-50, 64.
39 张玥, 李青宇, 刘雨琪, 等. 组态视角下AIGC应用平台用户中辍行为影响因素研究[J]. 情报理论与实践, 2024, 47(3): 130-137, 148.
ZHANG Y, LI Q Y, LIU Y Q, et al. A study on discontinuance behavior in the AIGC application platform based on the perspective of configuration[J]. Information studies: Theory & application, 2024, 47(3): 130-137, 148.
40 毛太田, 汤淦, 马家伟, 等. 人工智能生成内容(AIGC)用户采纳意愿影响因素识别研究: 以ChatGPT为例[J]. 情报科学, 2024, 42(7): 126-136.
MAO T T, TANG G, MA J W, et al. Factors influencing user adoption intention of artificial intelligence generated content(AIGC): A study on ChatGPT[J]. Information science, 2024, 42(7): 126-136.
41 孙清白. 论人工智能大模型训练数据风险治理的规范构建[J]. 电子政务, 2024(12): 41-52.
SUN Q B. On the normative construction of risk management of artificial intelligence big model training data[J]. E-Government, 2024(12): 41-52.
42 何炜. 生成式人工智能技术的伦理风险及负责任创新治理研究[J]. 世界科技研究与发展, 2024, 46(4): 548-559.
HE W. Research on ethical risks and responsible innovation governance of generative artificial intelligence technology[J]. World sci-tech R & D, 2024, 46(4): 548-559.
43 张旭芳. 生成式人工智能的算法安全风险及治理路径[J]. 江西社会科学, 2024, 44(8): 90-100.
ZHANG X F. Algorithm security risk and governance path of generative artificial intelligence[J]. Jiangxi social sciences, 2024, 44(8): 90-100.
44 MEHRABIAN A. Individual differences in stimulus screening and arousability[J]. Journal of personality, 1977, 45(2): 237-250.
45 徐孝娟, 赵宇翔, 史如菊, 等. SOR理论在国内图书情报学领域的采纳: 溯源、应用及未来展望[J]. 情报资料工作, 2022, 43(5): 98-105.
XU X J, ZHAO Y X, SHI R J, et al. The adoption of SOR theory in the field of library and information science in China: Traceability, application and future prospects[J]. Information and documentation services, 2022, 43(5): 98-105.
46 王文韬, 钱鹏博, 丁雨辰, 等. 个性化内容推荐关闭对移动社交媒体持续使用意愿的影响[J]. 图书情报工作, 2023, 67(11): 88-100.
WANG W T, QIAN P B, DING Y C, et al. The impact of personalized content recommendation close on continuous use intention of mobile social media[J]. Library and information service, 2023, 67(11): 88-100.
47 梅倩茹. 基于心流体验理论的非遗沉浸式体验设计研究[J]. 鞋类工艺与设计, 2023, 3(9): 158-161.
MEI Q R. Research on intangible cultural heritage immersive experience design based on the flow theory[J]. Shoes technology and design, 2023, 3(9): 158-161.
48 来有为, 周海伟, 厉基巍. 理解中国“Z世代”迎接消费新浪潮[J]. 发展研究, 2022, 39(3): 44-55.
LAI Y W, ZHOU H W, LI J W. Understanding China's "Z generation" and meeting the new wave of consumption[J]. Development research, 2022, 39(3): 44-55.
49 李赫, 乔晓嫚, 魏佳辛. 圈层视域下Z世代网络舆论引导进路研究[J]. 公关世界, 2024(10): 26-28.
LI H, QIAO X M /Y), WEI J X. Research on the guidance approach of Z generation network public opinion from the perspective of circles[J]. PR world, 2024(10): 26-28.
50 何绍辉. Z世代青年的形成背景与群体特征[J]. 中国青年研究, 2022(8): 14-20.
HE S H. The formation background and group characteristics of generation Z youth[J]. China youth study, 2022(8): 14-20.
51 揭秘Z世代15个特质, 掌握未来 4500亿消费潜力[EB/OL]. [2024-09-12]. .
52 刘晨. “种草”式内容营销对用户购买意愿的影响: 以小红书为例[J]. 新闻传播, 2024(15): 35-37.
LIU C. Influence of "planting grass" content marketing on users' purchase intention: Taking Xiaohongshu as an example[J]. Journalism communication, 2024(15): 35-37.
53 张长亮, 李竟彤, 郭宇. 网络社群用户信息共享行为影响因素研究[J]. 情报科学, 2020, 38(2): 39-46, 87.
ZHANG C L, LI J T, GUO Y. Influencing factors of network community user's information sharing behavior[J]. Information science, 2020, 38(2): 39-46, 87.
54 张大伟, 陈彦馨, 王敏. 期望与确认: 短视频平台持续使用影响因素初探: 基于SEM与fsQCA的研究[J]. 现代传播(中国传媒大学学报), 2020, 42(8): 133-140.
ZHANG D W, CHEN Y X, WANG M. Factors influencing the continuous use of short video platform: Based on SEM and fsQCA[J]. Modern communication (journal of communication university of China), 2020, 42(8): 133-140.
55 HOFFMAN D L, NOVAK T P. Flow online: Lessons learned and future prospects[J]. Journal of interactive marketing, 2009, 23(1): 23-34.
56 孙祺宇, 李菲. 元宇宙视角下数字阅读持续使用意愿研究[J]. 图书情报工作, 2023, 67(22): 23-34.
SUN Q Y, LI F. Research on the continuous digital reading willingness from the perspective of metaverse[J]. Library and information service, 2023, 67(22): 23-34.
57 王水雄. 中国“Z世代”青年群体观察[J]. 人民论坛, 2021(25): 24-27.
WANG S X. Observation on "generation Z" youth groups in China[J]. People's tribune, 2021(25): 24-27.
58 刘筱婷. 网络口碑、消费者鼓舞与冲动型购买行为的关系研究[J]. 商业经济研究, 2023(16): 71-74.
LIU X T. Research on the relationship among online word of mouth, consumer encouragement and impulsive buying behavior[J]. Journal of commercial economics, 2023(16): 71-74.
59 PARASURAMAN A, ZEITHAML V A, MALHOTRA A. ES-QUAL: A multiple-item scale for assessing electronic service quality[J]. Journal of service research, 2005, 7(3): 213-233.
60 李睿智, 齐航, 相甍甍, 等. 在线付费问答平台用户持续使用行为影响因素研究[J]. 情报探索, 2021(9): 94-101.
LI R Z, QI H, XIANG M M, et al. Research on influencing factors of continuous using behaviors of online payment Q & A platform[J]. Information research, 2021(9): 94-101.
61 姜文博, 刘维尚, 李蕊池. 用户行为视角下高校图书馆智慧服务影响因素研究[J]. 包装工程, 2024, 45(20): 383-391.
JIANG W B, LIU W S, LI R C. Factors influencing smart services in university libraries from the perspective of user behavior[J]. Packaging engineering, 2024, 45(20): 383-391.
62 赵宇翔. 知识问答类SNS中用户持续使用意愿影响因素的实证研究[J]. 图书馆杂志, 2016, 35(9): 25-37.
ZHAO Y X. An empirical investigation on the influencing factors of users' continuance intention in question-and-answer SNS[J]. Library journal, 2016, 35(9): 25-37.
63 谭春辉, 王晓宇, 刁斐, 等. 基于fsQCA方法的社会化问答社区用户持续使用意愿影响机理研究[J]. 图书馆学研究, 2023(1): 74-86.
TAN C H, WANG X Y, DIAO F, et al. A research on the influence mechanism of the user's continuous use intention in the social Q & A community based on the fsQCA method[J]. Research on library science, 2023(1): 74-86.
64 石婷婷. 基于UTAUT模型的学术社交网站用户采纳行为研究[J]. 新世纪图书馆, 2019(12): 46-52.
SHI T T. Research on adoption behavior of academic social networking sites based on the UTAUT model[J]. New century library, 2019(12): 46-52.
65 敖成兵. Z世代消费理念的多元特质、现实成因及亚文化意义[J]. 中国青年研究, 2021(6): 100-106.
AO C B. Diversified characteristics, realistic causes and subcultural significance of generation Z's consumption concept[J]. China youth study, 2021(6): 100-106.
[1] SHI Qin, XIE Jing, WU Shang. Influencing Factors and Correlations of User Satisfaction with Mobile Health Applications [J]. Journal of library and information science in agriculture, 2025, 37(1): 33-46.
[2] YOU Ge, LI Jielin, ZHANG Fangshun. Generating Mechanism of Online Public Opinion Heat in Public Emergencies from the Perspective of Information Ecology: Fuzzy Set Qualitative Comparative Analysis Based on 50 Cases [J]. Journal of library and information science in agriculture, 2025, 37(1): 86-99.
[3] Guowei GAO, Shanshan ZHANG, Jialan YU. A Review of Health Information Behaviors of Older People from the Perspective of Topic Differentiation [J]. Journal of library and information science in agriculture, 2024, 36(7): 34-49.
[4] Liqin YAO, Hai ZHANG. Model Construction and Empirical Research on the Influencing Factors of AIGC User Dropout Behavior [J]. Journal of library and information science in agriculture, 2024, 36(5): 79-92.
[5] Chunling GAO, Liyuan JIANG. Elderly People's Online Health Information Seeking Behavior Based on Evolutionary Dynamics [J]. Journal of library and information science in agriculture, 2024, 36(5): 65-78.
[6] LIU Yang, LYU Shuyue, LI Ruojun. Concept, Task, and Application of Social Robots in Information Behavior Research [J]. Journal of library and information science in agriculture, 2024, 36(3): 4-20.
[7] ZHOU Xin. Machine Functionalism and the Digital-Intelligence Divide: Evolutionary Pathways, Generative Logic and Regulatory Strategies [J]. Journal of library and information science in agriculture, 2024, 36(3): 59-71.
[8] SHI Yanqing, LI Lu, SHI Qin. Impact of User Heterogeneity on Knowledge Collaboration Effectiveness from a Network Structure Perspective [J]. Journal of library and information science in agriculture, 2024, 36(3): 72-82.
[9] WANG Yueying. Exploring the Causes of Low Health Information Literacy Among Rural Middle-Aged and Elderly Adults and its Improvement Strategies [J]. Journal of library and information science in agriculture, 2024, 36(2): 81-93.
[10] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of library and information science in agriculture, 2024, 36(2): 36-50.
[11] Zheng WANG, Miao ZHUANG, Yudi ZHANG, Yaqi ZHANG. Factors Influencing Online Health Information Acquisition Behavior of Rural Elderly Groups in Western China: A Field Study from the Guanzhong Region of Shaanxi Province [J]. Journal of library and information science in agriculture, 2024, 36(10): 23-37.
[12] Yijia WAN, Liping GU. Behavioral Motivation and Influencing Factors of Graduate Students Using AIGC Tool: An Empirical Analysis Based on Questionnaire Survey [J]. Journal of library and information science in agriculture, 2024, 36(10): 4-22.
[13] XIE Yanjie. Review of Public Library Services to the Elderly in China [J]. Journal of library and information science in agriculture, 2023, 35(7): 18-26.
[14] LI Jing. Causes of Intergenerational Conflict Heath Information Behavior and Its Mechanism in Social Control in the Context of Public Health Emergencies [J]. Journal of library and information science in agriculture, 2023, 35(5): 74-88.
[15] XIAO Yun, XU Huanhuan, XIAO Yayuan, ZHAO Youlin, PANG Hangyuan. User Preference Mining in Digital Community Based on CLV Preference Mining Model [J]. Journal of library and information science in agriculture, 2023, 35(2): 45-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!