中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (7): 50-62.doi: 10.13998/j.cnki.issn1002-1248.24-0572

Previous Articles     Next Articles

Driving Path of High-quality Development of China's Artificial Intelligence Technology Industry from the Perspective of Policy Instruments

Anqi HU1, Shunquan JI2   

  1. 1. Suzhou University of Science and Technology Library, Suzhou 215009
    2. Suzhou City University School of Marxism, Suzhou 215104
  • Received:2024-05-26 Online:2024-07-05 Published:2024-11-26

Abstract:

[Purpose/Significance] In recent years, the development momentum of the artificial intelligence (AI) technology industry has been strong. From the perspective of policy instruments, in-depth discussion on the high-quality development path of China's AI technology industry is of great significance to the selection of high-quality development path of China's provincial AI technology industry and the formulation and optimization of government policies in the AI industry. [Method/Process] The mechanism of the high-quality development path of the AI technology industry is relatively complex. The article is based on the theory of policy instruments, selecting supply-oriented, environment-oriented, and demand-oriented policy instruments as the analytical framework. The platforms such as Peking University Treasure, Law Star, and various provincial administrative region government portals were used to review policy texts. A total of 42 policy texts were selected as the objects of analysis, and NVivo software was used to encode the text content and assign conditional variables. The evaluation index of regional competitiveness of AI technology industry in 31 provincial administrative regions was selected as the result variable of QCA analysis, and the fuzzy set qualitative comparative analysis method was used to explore the diversified combination driving path of policy instrument elements. [Results/Conclusions] Research has shown that the high-quality development of the AI technology industry is influenced by multiple policy instruments, including demonstration and promotion, infrastructure, technical support, cooperation and exchange, and target planning. There are three combined paths, namely the supply-oriented path, the supply-demand synergy path, and the supply-demand-environment synergy path. The government should promote the high-quality and sustainable development of China's AI technology industry by improving the basic support system, continuously promoting infrastructure construction, improving the environmental impact mechanism, creating a sound and favorable policy environment, optimizing the structure of policy instruments, and strengthening demand-oriented public services. This study has several limitations. On the one hand, the selection of conditional variables needs to be further optimized; on the other hand, the article has not further verified the key combination path that affects the high-quality development of China's AI technology industry. In subsequent research, we will continue to improve the variable selection of policy instrument elements, draw on and explore more scientific variable assignment standards and methods, and conduct in-depth analysis of the specific combination path obtained in the article to verify the feasibility and scientificity of the key combination path for the high-quality development of the AI technology industry. This will further enrich the theoretical achievements of AI policy research and provide strong theoretical support for the formulation of AI technology industry policies.

Key words: artificial intelligence, high quality development, policy instruments, fsQCA, content analysis

CLC Number: 

  • G203

Fig.1

The impact of policy tools on the development of artificial intelligence technology industry"

Table 1

Description of policy tools for the development of artificial intelligence technology industry"

政策工具类型 二级政策工具要素 二级政策工具含义
供给型 基础设施 政府通过建设和完善基础设施,如网络、计算设备、创新平台、实验室、系统等,为人工智能技术产业高质量发展提供必要的资源
财政支持 政府通过财政拨款、财政补贴、专项资金等形式为人工智能产业发展提供财力支持
人力资源保障 政府通过人才引进、教育培训和业务规划等措施为人工智能产业发展提供人力保障
技术支持 政府为人工智能技术产业发展提供技术支持,如关键、核心技术的研发与创新
环境型 目标规划 政府基于人工智能产业发展需要,提出发展目标、基本原则、指导思想、规划、计划等
标准制定 政府为保障人工智能技术产业有序发展制定行业标准、技术方案、质量评价体系等
知识产权保护 强化人工智能领域知识产权保护,推动创新成果知识产权化,具体措施包括提供咨询服务、制定收益分配、明确主体责任等
金融税收 政府通过贷款、投融资、奖励、税收减免等经济手段推动人工智能技术产业发展
法规管制 政府围绕人工智能产业发展制定系列强制性措施,规范、引导人工智能技术产业有序发展
需求型 示范推广 政府通过建立试点、建设示范项目等推广成功经验,并积极促进人工智能基础研究的成果转化,从而加快人工智能相关工作的推进
合作交流 政府通过鼓励海内外企业、社会组织、个人等之间展开合作与交流,在引进人工智能技术发展相关经验的同时推动人工智能产业进一步发展
服务外包 政府通过委托服务的方式,引导企业、科研机构等参与人工智能项目的研发,以推动人工智能产业快速发展

Table 2

Examples of coding for some policy tools"

序号 政策工具类型 政策条目编码示例 文件来源
1 基础设施 加快智能化网络基础设施建设,增加适应人工智能发展的基础服务供给 《黑龙江省人工智能产业三年专项行动计划(2018—2020年)》
2 技术支持 引导开展云计算、人工智能等基础前沿技术攻关,形成一批技术成果 《贵州省人民政府关于促进大数据云计算人工智能创新发展加快建设数字贵州的意见》
3 标准制定 开展人工智能技术研发、科技成果转化和行业标准制定等工作 《广东省新一代人工智能发展规划》
4 法规管制 推动人工智能相关政策法规建设,指导、协调和督促人工智能工作部署实施 《甘肃省新一代人工智能发展实施方案》
5 示范推广 通过实施人工智能科技重大专项,开展应用示范 《天津市人工智能“七链”精准创新行动计划(2018—2020年)》
6 合作交流 鼓励并支持有条件的机构和企业,加强与全球顶尖人工智能研究机构和企业合作互动 《湖南省人工智能产业发展三年行动计划(2019—2021年)》
7 服务外包 开展制造能力外包服务,推动中小企业智能化发展 《浙江省新一代人工智能发展规划》

Fig.2

Number of reference points for coding different types of artificial intelligence policy tools"

Table 3

Measurement standards and calibration of outcome and conditional variables"

变量分类 变量名称 完全隶属(0.95) 交叉点(0.5) 完全不隶属(0.05)
结果变量 评价指数(INDEX) 81.170 13.190 4.010
条件变量 基础设施(JCSS) 19.900 7.500 2.000
技术支持(JSZC) 18.950 7.500 1.000
目标规划(MBGH) 7.950 3.000 1.000
示范推广(SFTG) 16.950 8.000 2.050
合作交流(HZJL) 12.000 5.500 2.000

Table 4

Necessary condition analysis results"

前因变量 结果变量INDEXfs 结果变量~INDEXfs
一致性 覆盖度 一致性 覆盖度
JCSSfs 0.674 339 0.713 471 0.581 557 0.650 259
~JCSSfs 0.669 442 0.602 203 0.743 744 0.707 049
JSZCfs 0.595 984 0.626 029 0.592 215 0.657 407
~JSZCfs 0.673 849 0.609 929 0.663 114 0.634 309
MBGHfs 0.620 47 0.673 22 0.635 31 0.728 48
~MBGHfs 0.749 755 0.660 483 0.715 014 0.665 66
SFTGfs 0.586 68 0.577 071 0.666 821 0.693 16
~SFTGfs 0.688 051 0.661 488 0.593 142 0.602 637
HZJLfs 0.649 853 0.679 816 0.571 826 0.632 172
~HZJLfs 0.648 384 0.588 968 0.710 38 0.681 939

Table 5

Configuration analysis of the driving path for high-quality development of China's artificial intelligence technology industry"

条件变量 人工智能高质量发展指数INDEX
H1 H2 H3
供给型
基础设施(JCSS)
技术支持(JSZC)
环境型
目标规划(MBGH)
需求型
示范推广(SFTG)
合作交流(HZJL)
原始覆盖度 0.299 706 0.410 872 0.299 216
唯一覆盖度 0.091 576 8 0.166 014 0.036 239
解的一致性 0.914 798 0.796 015 0.916 042
总体覆盖度 0.585 211
总体一致性 0.805 799
1
EYSENBACH G. The role of ChatGPT, generative language models, and artificial intelligence in medical education: A conversation with ChatGPT and a call for papers[J]. JMIR medical education, 2023, 9: e46885.
2
费艳颖, 刘彩薇. 负责任创新视角下我国人工智能产业政策的解构与重构[J]. 情报杂志, 2021, 40(7): 45-51, 57.
FEI Y Y, LIU C W. Deconstruction and reconstruction of China's AI industry policy from the perspective of responsible innovation[J]. Journal of intelligence, 2021, 40(7): 45-51, 57.
3
深圳市易行网数字科技有限公司. 2024人工智能发展白皮书[EB/OL]. [2024-04-20].
4
中华人民共和国中央人民政府. 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. [2024-04-20].
5
北京市经济和信息化委员会. 北京市加快科技创新培育人工智能产业的指导意见[EB/OL]. [2024-04-20].
6
广东省人民政府办公厅. 广东省人民政府关于印发广东省新一代人工智能发展规划的通知[EB/OL]. [2024-04-20].
7
上海市人民政府. 上海市促进人工智能产业发展条例[EB/OL]. [2024-04-20].
8
陈庆云. 公共政策的理论界定[J]. 中国行政管理, 1995(11): 26-29.
CHEN Q Y. Theoretical definition of public policy[J]. Chinese public administration, 1995(11): 26-29.
9
杨佳雯, 赵志耘, 高芳, 等. 基于文本量化分析的中国省级人工智能政策布局研究[J]. 现代情报, 2022, 42(7): 125-135.
YANG J W, ZHAO Z Y, GAO F, et al. Research on China's provincial artificial intelligence policy layout based on text quantitative analysis[J]. Journal of modern information, 2022, 42(7): 125-135.
10
吕文晶, 陈劲, 刘进. 政策工具视角的中国人工智能产业政策量化分析[J]. 科学学研究, 2019, 37(10): 1765-1774.
LV W J, CHEN J, LIU J. A quantitative analysis of China's Artificial Intelligence industry policy from the perspective of policy tools[J]. Studies in science of science, 2019, 37(10): 1765-1774.
11
李良成, 李莲玉. 目标—工具—产业链三维框架下人工智能政策研究[J]. 自然辩证法研究, 2019, 35(10): 112-118.
LI L C, LI L Y. Research on artificial intelligence policies under tri-dimensional frame of objective-tool-industry chain[J]. Studies in dialectics of nature, 2019, 35(10): 112-118.
12
臧维, 张延法, 徐磊. 我国人工智能政策文本量化研究——政策现状与前沿趋势[J]. 科技进步与对策, 2021, 38(15): 125-134.
ZANG W, ZHANG Y F, XU L. Quantitative research on artificial intelligence policy text in China - Policy status quo and frontier trends[J]. Science & technology progress and policy, 2021, 38(15): 125-134.
13
毛子骏, 梅宏. 政策工具视角下的国内外人工智能政策比较分析[J]. 情报杂志, 2020, 39(4): 74-81, 59.
MAO Z J, MEI H. Analysis of domestic and foreign policies in artificial intelligence from the perspective of policy instruments[J]. Journal of intelligence, 2020, 39(4): 74-81, 59.
14
汤志伟, 雷鸿竹, 周维. 中美人工智能产业政策的比较研究——基于目标、工具与执行的内容分析[J]. 情报杂志, 2019, 38(10): 73-80.
TANG Z W, LEI H Z, ZHOU W. A comparative study of artificial intelligence industry policies in China and the United States: Content analysis based on objectives, tools and implementation[J]. Journal of intelligence, 2019, 38(10): 73-80.
15
单晓红, 何强, 刘晓燕, 等. “政策属性—政策结构” 框架下人工智能产业政策区域比较研究[J]. 情报理论与实践, 2021, 44(3): 194-202.
SHAN X H, HE Q, LIU X Y, et al. Regional comparative research on artificial intelligence industry policy under the framework of "policy attributes-policy structure"[J]. Information studies: Theory & application, 2021, 44(3): 194-202.
16
李明, 曹海军. 中国央地政府人工智能政策比较研究——一个三维分析框架[J]. 情报杂志, 2020, 39(6): 96-103, 53.
LI M, CAO H J. A comparative study of artificial intelligence policies of China's centraland local governments: A three-dimensional frame[J]. Journal of intelligence, 2020, 39(6): 96-103, 53.
17
ALLAM Z, DHUNNY Z A. On big data, artificial intelligence and smart cities[J]. Cities, 2019, 89: 80-91.
18
YANG H. Safety issues of artificial intelligence and policy responses[J]. The journal of Korean institute of communications and information sciences, 2018, 43(10): 1724-1732.
19
MADARIAGA L, NUSSBAUM M, MARAÑÓN F, et al. User experience of government documents: A framework for informing design decisions[J]. Government information quarterly, 2019, 36(2): 179-195.
20
KANKANHALLI A, CHARALABIDIS Y, MELLOULI S. IoT and AI for smart government: A research agenda[J]. Government information quarterly, 2019, 36(2): 304-309.
21
宋振峰, 宋惠兰. 基于内容分析法的特性分析[J]. 情报科学, 2012, 30(7): 964-966, 984.
SONG Z F, SONG H L. Characters analysis based on content analysis method[J]. Information science, 2012, 30(7): 964-966, 984.
22
FISS P C. Building better causal theories: A fuzzy set approach to typologies in organization research[J]. Academy of management journal, 2011, 54(2): 393-420.
23
SCHNEIDER C Q, WAGEMANN C. Set-theoretic methods for the social sciences: A guide to qualitative comparative analysis[M]. Cambridge: Cambridge University Press, 2012.
24
FISS P C. A set-theoretic approach to organizational configurations[J]. Academy of management review, 2007, 32(4): 1180-1198.
25
HOWLETT M. Policy instruments, policy styles, and policy implementation[J]. Policy studies journal, 1991, 19(2): 1-21.
26
何江, 闫淑敏, 谭智丹, 等. “人才争夺战”政策文本计量与效能评价——一个企业使用政策的视角[J]. 科学学与科学技术管理, 2020, 41(12): 52-70.
HE J, YAN S M, TAN Z D, et al. Text measurement and effectiveness evaluation on the talent policy of “the war for talent”: A perspective based on enterprise using policy[J]. Science of science and management of S & T, 2020, 41(12): 52-70.
27
MCDONNELL L M, ELMORE R F. Getting the job done: Alternative policy instruments[J]. Educational evaluation and policy analysis, 1987, 9(2): 133-152.
28
HOWLETT M, RAMESH M. Studying public policy: policy cycles and policy subsystems[J]. American political ence association, 2009, 91(2): 548-580.
29
ROTHWELL R, ZEGVELD W. Reindusdalization and technology[M]. London: Logman Group Limited, 1985: 83-104.
30
张越, 曹悦, 白晨. 人工智能颠覆性技术政策工具演变分析[J]. 情报科学, 2023, 41(10): 121-128.
ZHANG Y, CAO Y, BAI C. An analysis on policy instruments development of disruptive technology policies of artificial intelligence[J]. Information science, 2023, 41(10): 121-128.
31
段尧清, 陈婷, 刁斐, 等. 政策工具视角下我国省域数字政府高质量建设驱动路径研究[J]. 情报科学, 2023, 41(5): 124-130, 143.
DUAN Y Q, CHEN T, DIAO F, et al. The driving path of high-quality construction of provincial digital government in China from the perspective of policy tools[J]. Information science, 2023, 41(5): 124-130, 143.
32
RIHOUXB, RAGINC C. Configurational comparative methods: Qualitative Comparative Analysis (QCA) and related techniques[M]. Los Angeles: Sage, 2009: 19-32.
33
中国新一代人工智能发展战略研究院. 人工智能战略院发布《中国新一代人工智能科技产业发展2023》和《中国新一代人工智能科技产业区域竞争力评价指数2023》[EB/OL]. [2024-04-10].
34
宋世俊, 王崇鑫, 张华静. TOE框架下公共数字文化服务供给效率的提升路径研究——基于模糊集定性比较分析[J]. 情报资料工作, 2022, 43(6): 79-86.
SONG S J, WANG C X, ZHANG H J. Research on the improvement path of public digital cultural service supply efficiency under the framework of TOE: Based on the fuzzy-set qualitative comparative analysis[J]. Information and documentation services, 2022, 43(6): 79-86.
35
Ragin C C. Redesigning social inquiry: Fuzzy sets and beyond[M]. Chicago: University of Chicago Press, 2009.
36
WOODSIDE A G. Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory[J]. Journal of business research, 2013, 66(4): 463-472.
37
MORENO F C, PRADO-GASCÓ V, HERVÁS J C, et al. Predicting future intentions of basketball spectators using SEM and fsQCA[J]. Journal of business research, 2016, 69(4): 1396-1400.
38
RAGIN C C. Set relations in social research: Evaluating their consistency and coverage[J]. Political analysis, 2006, 14(3): 291-310.
39
GRECKHAMER T, FURNARI S, FISS P C, et al. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research[J]. Strategic organization, 2018, 16(4): 482-495.
40
PAPPAS I O, WOODSIDE A G. Fuzzy-set qualitative comparative analysis (fsQCA): Guidelines for research practice in information systems and marketing[J]. International journal of information management, 2021, 58: 102310.
41
YAO Y B, ZHANG R S, YANG F, et al. Link prediction via layer relevance of multiplex networks[J]. International journal of modern physics C, 2017, 28(8): 1-24.
42
中国发展网. 深圳前海出台支持人工智能高质量发展高水平应用若干措施[EB/OL]. [2024-04-04].
43
南方日报网. 深圳加快推进人工智能全域全时场景应用女里创建人工智能先锋城市[EB/OL]. [2024-04-04].
44
广东省科学技术厅. 《广东省新一代人工智能创新发展行动计划(2022-2025年)》[EB/OL]. [2024-04-08].
45
上海市人民政府. 上海市人民政府办公厅印发《关于本市推动新一代人工智能发展的实施意见》的通知[EB/OL]. [2024-04-04].
46
张明, 杜运周. 组织与管理研究中QCA方法的应用: 定位、策略和方向[J]. 管理学报, 2019, 16(9): 1312-1323.
ZHANG M, DU Y Z. Qualitative comparative analysis(QCA) in management and organization research: Position, tactics, and directions[J]. Chinese journal of management, 2019, 16(9): 1312-1323.
47
辛本禄, 穆思宇. 战略创业理论视角下服务创新驱动机制研究——一个模糊集定性比较分析[J]. 科技进步与对策, 2023, 40(11): 112-121.
XIN B L, MU S Y. The impact of entrepreneurial orientation and dynamic capabilities on service innovation of manufacturing enterprises: A fuzzy set qualitative comparative analysis[J]. Science & technology progress and policy, 2023, 40(11): 112-121.
[1] Fangrui BAI, Shaobo LIANG, Dan WU, Yuheng REN, Fan YANG. Human-Intelligent Information System Collaboration in Digital Twin Environment: Value Proposition, Key Technologies, and Practical Approaches [J]. Journal of Library and Information Science in Agriculture, 2024, 36(7): 4-18.
[2] Mo LI, Bin YANG. From Generative Artificial Intelligence to Artificial General Intelligence: Enabling Innovation Models in Library Knowledge Services [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 50-61.
[3] Xiaolin ZHANG. Beyond Resources, Beyond Technologies, Beyond One's Institution: Developing New Productive Forces for Knowledge Services through Reform and Innovation of Traditional Knowledge Service Mechanisms [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 4-15.
[4] PENG Lihui, ZHANG Qiong, LI Tianyi. Risk of AI Algorithmic Discrimination Embedded in Government Data Governance and Its Prevention and Control [J]. Journal of Library and Information Science in Agriculture, 2024, 36(5): 23-31.
[5] LUO Guofeng, LIU Qingsheng. Application Scene and Practice of ChatGPT Empowering Information Literacy Education [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 91-101.
[6] LI Mengli, WANG Ying, QIAN Li, XIE Jing, CHANG Zhijun, JIA Haiqing. Building an Scientific and Technological Talent Database for New Quality Productive Forces [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 15-25.
[7] ZOU Yayi. ChatGPT Strengthens Library Intelligence Services: Opportunities, Challenges and Development Strategies [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 71-80.
[8] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 36-50.
[9] WAN Qiao. Future Learning Centers: Educational Paradigms, Basic Characteristics and Space Construction [J]. Journal of Library and Information Science in Agriculture, 2023, 35(9): 57-65.
[10] LI Tian, ZHAO Ruixue, XIAN Guojian, KOU Yuantao. Agricultural Intelligent Knowledge Services to Enable Rural Revitalization: Internal Mechanism and Dilemma Relief [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 43-54.
[11] WANG Chao, KONG Xianghui. Application of Large-scale Pre-Training Language Model in Network Health Information Identification [J]. Journal of Library and Information Science in Agriculture, 2023, 35(6): 51-59.
[12] MA Lecun, ZHAN Xini, ZHU Qiyu, SUN Rong, LI Baiyang. Digital Intelligence Integration Innovation Development of GLAM Driven by AIGC [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 4-15.
[13] LV Ruijuan, ZHANG Jingbei, YAN Dan, CAI Yingchun. Innovative Development of AIGC and GLAM: Review of "Shaping the Future: AIGC and GLAM Innovative Development" Cutting-Edge Academic Forum [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 27-36.
[14] FAN Xinmei. Value, Current Situation, Difficulties, and Countermeasures of Reading Leader Service in Public Libraries under the High Quality Development of National Reading [J]. Journal of Library and Information Science in Agriculture, 2023, 35(12): 60-70.
[15] LI Peng, SONG Xigui. AIGC Technology Enables Innovative Applications in Library Reading Promotion [J]. Journal of Library and Information Science in Agriculture, 2023, 35(12): 84-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!