中文    English

Journal of Library and Information Science in Agriculture ›› 2021, Vol. 33 ›› Issue (4): 45-57.doi: 10.13998/j.cnki.issn1002-1248.20-0876

• Research paper • Previous Articles     Next Articles

Technology Forecasting Based on Topic Identification of Online Innovation Communities and S-Curve

LI Lei1, SONG JianNing2, SONG TianHua1,*   

  1. 1. Library Harbin Institute of Technology, Harbin 150090;
    2. Northeast Agricultural University, Harbin 150038
  • Received:2020-09-25 Online:2021-04-05 Published:2021-04-30

Abstract: [Purpose/Significance] It is very important for enterprises, industries and countries to carry out technology prediction from a meso-perspective, so it is necessary to establish a set of suitable methods. [Method/Process] Applying text mining and detection of patent citation network, this study built subject clustering based on biggest fragmenting to detect innovation communities and with s-curve to forecast technology development of innovation communities. [Results/Conclusions] The empirical research on hybrid rice breeding innovation field shows that the proposed method not only enriches the theory and method of technology prediction, but also gives the relevant innovation institutions and national level strategic suggestions from the meso-perspective.

Key words: technological forecasting, innovation network, network community discovering, text mining, subject clustering, patent citation, hybrid rice

CLC Number: 

  • G303
[1] 赵玉堂. 知识主题动态发展模式之建立——以供应链管理为例[D]. 台湾: 国立云林大学全球运筹管理研究所, 2007.
ZHAO Y T.The establishment of dynamic development model of knowledge subject - Taking supply chain management as an example[D]. Taiwan: Institute of global operations research management, National Yunlin university, 2007.
[2] 陈峰. 日本第八次科学预见项目的竞争情报学解析[J]. 竞争情报, 2007, 春季刊: 2-5.
CHEN F. Competitive intelligence analysis of Japan's eighth science foresight project[J]. Competitive intelligence, 2007, Spring quarterly: 2-5.
[3] Martino J P.Technological Forecasting for Decision Making[M], New York: McGraw-Hill, Inc., 1993.
[4] PORTER A L, ROPER A T, MASON T W, et al.Forecasting and management of technology[M]. New York: Wiley, 1991.
[5] 李国秋, 龙怡. 预测市场应用于技术预见的优势分析—对13中常用技术预见方法的20个维度的实证研究[J]. 图书馆杂志, 2014(8): 11-28.
LI G Q, LONG Y.The Strengths of the prediction markets being applied to the technology foresight: 20 dimensions empirical studies for 13 commonly used methods of technology foresight[J]. Library journal, 2014(8): 11-28.
[6] Technology futures analysis methods working group. Technology futures analysis: Toward integration of the field and new methods[J]. Technological forecasting & social change, 2004, 71(3): 287-303.
[7] CHANG S B, LAI K K, CHANG S M.Exploring technology diffusion and classification of business methods: Using the patent citation network[J]. Technological forecasting & social change, 2009, 76(1): 107-117.
[8] SEIDEL. Citation system for patent office[J]. Journal of patent office society, 1949, 31: 554.
[9] HART. Re: Citation system for patent office[J]. Journal of patent office society, 1949, 31: 714.
[10] DAIM T U, RUEDA G, MARTIN H, et al.Forecasting emerging technologies: Use of bibliometrics and patent analysis[J]. Techno-logical forecasting & social change, 2006, 73: 981-1012.
[11] LAI K K, WU S J.Using the patent co-citation approach to estab-lish a new patent classification system[J]. Information processing and management, 2005, 41: 313-330.
[12] YOUTIE J, IACOPETTA M, GRAHA S.Assessing the nature of nanotechnology: Can we uncover an emerging general purpose technology?[J]. J techno transfer, 2008, 33: 315-329.
[13] 翟东升, 王明吉. 基于专利地图理论的专利分析系统研究[J]. 情报杂志, 2006, 3: 5-7.
ZHAI D S, WANG M J.Research on patent analysis system based on patent map theory[J]. Journal of intelligence, 2006, 3: 5-7.
[14] 武建龙, 陶微微, 王宏起. 基于专利地图的企业研发定位方法及实证研究[J]. 科学学研究, 2009, 27(2): 220-225.
WU J L, TAO W W, WANG H Q.Research on R&D position methods of enterprises and related empirical study based on patent map[J]. Studies in science of science, 2009, 27(2): 220-225.
[15] 黄鲁成, 蔡爽. 基于专利的技术轨道实证研究[J]. 科学学研究, 2009, 27(3): 363-367.
HUANG L C, CAI S.Empirical study on the technological trajecto-ry based on patent information[J]. Studies in science of science, 2009, 27(3): 363-367.
[16] 李婧, 张旭, 赵蕴华, 等. 基于专利引文的技术竞争力研究[J]. 数字图书馆论坛, 2008, 11: 22-26.
LI J, ZHANG X, ZHAO Y H, et al.Research on technology competitiveness based on patent citation[J]. Digital library forum, 2008, 11: 22-26.
[17] 康宇航, 苏敬勤. 基于专利引文的技术跟踪系统—理论模型与工具开发[J]. 科学学与科学技术管理, 2008, 4: 24-27.
KANG Y H, SU J Q.Technology tracking system based on patent quotation - Theory model and tool development[J]. Science of sci-ence and management of S.& T., 2008, 4: 24-27.
[18] WARTBURG I, TEICHERT T, ROST K.Inventive progress mea-sured by multi-stage patent citation analysis[J]. Research policy, 2005, 34: 1591-1607.
[19] HUANG Z.International nanotechnology development in 2003: Country, institution, and technology field analysis based on USPTO patent database[J]. Journal of nanoparticle research, 2004, 6: 325-354.
[20] MINA A, RAMLOGAN R, TAMPUBOLON G, et al.Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge[J]. Research policy, 2007, 36(5): 789-806.
[21] 王宏起, 夏凡, 王珊珊. 新兴产业技术融合方向预测: 方法及实证[J]. 科学学研究, 2020, 38(6): 1009-1017, 1075.
WAGN H Q, XIA F, WANG S S.Forecast on technological fusion direction of emerging industries: Method and empirical research[J]. Studies in science of science, 2020, 38(6): 1009-1017, 1075.
[22] 史璇. 基于科技文献的燃料电池汽车企业技术机会研究[D]. 太原: 山西大学, 2020.
SHI X.Research on technology opportunities of fuel cell vehicle films based on scientific and technological text[D]. Taiyuan: Shanxi university, 2020.
[23] 覃兴. 专利分析技术预测方法及其在电缆附件行业中的应用[D]. 广州: 华南理工大学, 2017.
QIN X.Patent analysis technology prediction method and its application in cable accessories industry[D]. Guangzhou: South China university of technology, 2017.
[24] 吴颖文, 纪杨建, 顾新建. 基于专利技术共现动态网络的产业共性技术预测研究[J]. 计算机集成制造系统, 2019, 10: 1-18.
WU Y W, JI Y J, GU X J.Research on industrial generic technology prediction based on technology co-occurrence dynamic network of patents[J]. Computer integrated manufacturing systems, 2019, 10: 1-18.
[25] CIGDEM B, SUAT A, YAVUZ E.Forecasting of innovation in the light of semantic networks[J]. Procedia computer science, 2019, 158(158): 443-449.
[26] VERSPAGEN B.Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research[J]. Working papers, 2005, 10(1): 93-115.
[27] FONTANA R, NUVOLARI A, VERSPAGEN B.Mapping technological trajectories as patent citation networks: An application to data communication standards[R]. Working paper, 2008, 2.
[28] 郭俊芳. 基于语义挖掘的技术创新路径分析与评价方法研究[D]. 北京: 北京理工大学, 2016.
GUO J F.A semantic mining-based method analyze and evaluate technology innovation path[D]. Beijing: Beijing institute of technology, 2016.
[29] 汪雪锋, 张硕, 韩晓彤, 等. 技术预测研究现状与未来展望[J]. 农业图书情报, 2019, 31(6): 4-11.
WANG X F, ZHANG S, HAN X T, et al.Technology forecasting: Status and trends[J]. Agricultural library and information, 2019, 31(6): 4-11.
[30] 王京安, 牛建, 王坤, 等. 基于专利引文网络的技术范式转换预见方法体系构建——以液晶材料技术的发展为例[J]. 现代情报, 2017, 37(8): 135-141.
WAGN J A, NIU J, WAGN K, et al.Construction of the prediction method system of the technological paradigm transformation based on patent citation network - Taking the example of liquid crystal materials[J]. Journal of modern information, 2017, 37(8): 135-141.
[31] CHANGYONG L, OHJIN K, MYEONGJUNG K, et al.Early identification of emerging technologies: A machine learning approach using multiple patent indicators[J]. Technological forecasting & social change, 2018, 127(127): 291-303.
[32] IAN M P L, ALEX F D P, GECIANE S P. Patent-based network analysis to understand technological innovation pathways and trends[J]. Technology in society, 2019, 59(59).
[33] AHMAD B, BRUNO A, CATHERINE B.Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective[J]. Scientometrics, 2013, 94(3): 1111-1136.
[34] 范维熙. 基于专利地图的太阳能电池技术发展趋势研究[D]. 南京: 南京工业大学, 2015.
FAN W X.Research on technological trend of solar cell technology based on patent map[D]. Nanjing: Nanjing tech university, 2015.
[35] 金丹. 基于专利信息分析的激光加工技术发展趋势预测[D]. 武汉: 华中科技大学, 2015.
JIN D.A thesis submitted in partial fulfillment of the requirements for the degree for the master of engineering[D]. Wuhan: Huazhong university of science and technology, 2015.
[36] 许冠南, 谢梦娇, 潘美娟, 等. 3D打印产业技术的演变与预测研究——基于专利主路径分析[J]. 北京邮电大学学报(社会科学版), 2016, 18(4): 77-85.
XU G N, XIE M J, PAN M J, etc. Technology forecasting of 3D printing industry - Based on main path analysis of patent[J]. Journal
37 of Beijing university of posts and telecommunications (social sciences edition), 2016, 18(4): 77-85.
[37] 杨中楷, 刘倩楠, 于霜. 基于专利引文网络的技术领域间关系探析[J]. 科研管理, 2011, 32(5): 149-155.
YANG Z K, LIU J N, YU S.The relationship among technical fields based on patent citation network[J]. Science research management, 2011, 32(5): 149-155.
[38] 杨中楷, 刘佳. 太阳能光伏技术演进路径的可视化分析[C]. 第六届中国科技政策与管理学术年会论文集, 2010.
YANG Z K, LIU J.Visual analysis of evolution path of solar photo-voltaic technology[C]. Proceedings of the 6th annual meeting of China science and technology policy and management, 2010.
[39] 柴庆凤, 翟东升, 蔡力伟, 等. 基于专利网络链接模型的技术链接机会预测方法研究[J]. 情报理论与实践, 2020, 7: 1-18.
CHAI Q F, ZHAI D S, CAI L W, et al.Study on the method of the technology link opportunity forecasting based on patent network link model[J]. Information studies: theory & application, 2020, 7: 1-18.
[40] 蔡力伟. 基于链接预测的技术机会预测系统研究[D]. 北京: 北京工业大学, 2016.
CAI L W.A research on technology opportunity prediction system based on link prediction[D]. Beijing: Beijing university of technology, 2016.
[41] 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100.
ZHAI D S, LIU H, ZHAN J, et al.Approach to mining technology opportunity based on link prediction[J]. Journal of the China society for scientific and technical information, 2016, 35(10): 1090-1100.
[42] CHUN J H, LEE C S, LEE S J.Central technology deriving for the patents of medical device using social network analysis[J]. Management & information systems review, 2016, 35(2): 221-254.
[43] 李佳佳, 马铁驹. 利用局部离群因子算法探测核心技术发展趋势——以中国风能专利数据为例[J]. 情报杂志, 2017, 36(3): 119-124, 195.
LI J J, MA T J.Detecting core technology's development trend with LOF based on wind energy patent data of China[J]. Journal of intelligence, 2017, 36(3): 119-124, 195.
[44] HANLIN Y, MENGJUN L, KEITH W H, et al.Development trend forecasting for coherent light generator technology based on patent citation network analysis[J]. Scientometrics, 2017, 111(1): 297-315.
[45] 周源, 刘怀兰, 廖岭, 等. 基于主题模型的技术预见定量方法综述[J]. 科技管理研究, 2017, 37(11): 185-196.
ZHOU Y, LIU H L, LIAO L, et al.Literature review of quantitative technology foresight methods based on topic modeling[J]. Science and technology management research, 2017, 37(11): 185-196.
[46] 廖岭. 基于文本挖掘和主路径分析的技术趋势预测方法及案例研究[D]. 武汉: 华中科技大学, 2017.
LIAO L.Method and case study based on text mining and main path analysis technological tendency forecasting[D]. Wuhan: Hua
47 zhong university of science and technology, 2017.
[47] 高建. 基于冲突网络和逻辑曲线模型的技术预测研究[D]. 天津: 河北工业大学, 2018.
GAO J.Technology forecasting based on the network of contradiction and logistic curve models[D]. Tianjin: Hebei university of technology, 2018.
[48] 文雄辉. 基于专利挖掘的技术预见方法及其应用[D]. 广州: 华南理工大学, 2019.
WEN X H.The method technology foresight based on patent mining and its application[D]. Guangzhou: South China university of tech-nology, 2019.
[49] 钱娇. 基于SAO的专利挖掘方法及在工业机器人领域的应用[D]. 广州: 华南理工大学, 2018.
QIAN J.The method of patent mining based on SAO and its appli-cation in industrial robot[D]. Guangzhou: South China university of technology, 2018.
[50] 张振刚, 罗泰晔. 基于知识网络的技术预见研究[J]. 科学学研究, 2019, 37(6): 961-967, 985.
ZHANG Z G, LUO T Y.Research on technology foresight based on knowledge network[J]. Studies in science of science, 2019, 37(6): 961-967, 985.
[51] XIONGHUI W.Technology foresight research of industrial robot based on patent analysis[J]. Journal of data analysis and informa-tion processing, 2019, 7(2): 74-90.
[52] 尹忠博, 罗威, 罗准辰. 数据驱动的技术预测: 现状、技术与趋势[J]. 情报理论与实践, 2018, 41(12): 35-40.
YIN Z B, LUO W, LUO Z C.Data-driven technology forecasting: status, technology and trends[J]. Information studies: Theory & application, 2018, 41(12): 35-40.
[53] DIANE J C, LAWRENCE B H.Mining graph data[J]. New Jersey: John Wiley & Sons, Inc., Hoboken, 2007.
[54] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Phys, Rev, E, 2004, 69(2): 026113.
[55] KERNIGHAN B, LIN S.An efficient heuristic procedure for partitioning graphs[J]. The bell system technical J, 1970, 49.
[56] SHI J, MALIK J.Normalized cuts and image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(8): 888-905.
[57] LUXBURG U V.A tutorial on spectral clustering[J]. Statistics and computing, 2007, 17(4): 395-416.
[58] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2004, 69(6): 066133.
[59] SATULURI V, PARTHASARATHY S.Scalable graph clustering using stochastic flows: Applications to community discovery[C]. In KDD' 09, New York, ACM USA, 2009: 737-746.
[60] DONGEN S V.Graph clustering by flow simulation[D]. Utrecht: University of Utrecht, 2000.
[61] GUO J-L.S-Curve networks and an approximate method for esti-mating degree distributions of complex networks[J]. Chin, Phys, B, 2010(120503): 1-7.
[1] XING Yunfei, LI Yuhai. Visualization of Topic Graph of Weibo Public Opinion Based on Text Mining [J]. Journal of Library and Information Science in Agriculture, 2021, 33(7): 12-23.
[2] LI Jihong, CHEN Ninghui, XU Guizhen, JIANG Shan, WANG Hongjiang. A Visualization Analysis of Library, Information and Documentation Science from the Perspective of the National Social Science Fund Programs [J]. Journal of Library and Information Science in Agriculture, 2021, 33(5): 83-92.
[3] ZHANG Yuyao, CHEN Yuanyuan. Discourse Cognition and Construction Based on Text Mining: Taking the White House News Text in the Field of Artificial Intelligence and 5G as an Example [J]. Journal of Library and Information Science in Agriculture, 2021, 33(4): 35-44.
[4] TANG Han, LI Rui. Discovery of Innovation Cooperation Opportunities between China and India Based on the Analysis of Patent Citations of Category A [J]. Journal of Library and Information Science in Agriculture, 2021, 33(2): 35-43.
[5] SUN Tan, DING Pei, HUANG Yongwen, XIAN Guojian. Review on the Application and Development Strategies of Text Mining in Agriculture Knowledge Services [J]. Journal of Library and Information Science in Agriculture, 2021, 33(1): 4-16.
[6] ZHAO Xueqin, WANG Qingqing. An Investigation into the Travel Information Needs of Online Q&A Platform Users: Taking Tuniu Q&A Community as an Example [J]. Journal of Library and Information Science in Agriculture, 2020, 32(10): 47-55.
[7] LIU Yiru, SUN Huijun. Review of the Application and Methods of Non-patent Citations in Science-Technology Related Research [J]. Agricultural Library and Information, 2019, 31(2): 11-19.
[8] WEI Xiaoping. Deep Development and Utilization of Digital Ancient Books under the Background of Digital Humanities [J]. , 2018, 30(9): 106-110.
[9] ZHOU Na, LI Xiuxia, GAO Dan, JIAO Hong. Research on Knowledge Combination Analysis Based on Latent Topics—An Example of Communication [J]. , 2018, 30(9): 85-90.
[10] CAI Hao-yuan. Analysis of the Latent Semantic Indexing text Mining Method [J]. , 2016, 28(7): 5-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!