中文    English

›› 2016, Vol. 28 ›› Issue (7): 5-9.doi: 10.13998/j.cnki.issn1002-1248.2016.07.001

• Information forum •     Next Articles

Analysis of the Latent Semantic Indexing text Mining Method

CAI Hao-yuan   

  1. Guangzhou Library, Guangdong Guangzhou 510623, China
  • Received:2016-01-16 Online:2016-07-05 Published:2016-07-11

Abstract: This paper introduced the application of latent semantic indexing in the field of information retrieval, and presented three ways to calculate the lexical item weighting, and then analyzed the role of Singular Value Decomposition (SVD) in capturing the important information of matrix, and showed how the reduced-rank approximation of item-document matrix simulated the psychological process of human when understanding the meanings of sentences. Through the comparison of the searching algorithm of Vector Space Model (VSM) and LSI, and the case of text mining of a term-document matrix, it indicated how LSI worked in analyzing the connection between documents.

Key words: Latent semantic indexing

CLC Number: 

  • TP391.3
[1] 文本挖掘过程[C/OL].[2016-01-02].http://www.cnblogs.com/woodcutter/archive/2010/10/10/1847495.html.
[2] Vector Space Model Wiki[C/OL].[2015-12-30].https://en.wikipedia.org/wiki/Vector_space_model.
[3] 任树怀.LUCENE搜索算法剖析及优化研究[J].图书馆杂志,2014,
(12):17-23.
[4] Latent semantic indexing Wiki[C/OL].[2016-01-03].https://en.wikiped
ia.org/wiki/Latent_semantic_indexing.
[5] 盖杰,王怡,武港山.基于潜在语义分析的信息检索[J].计算机工程,2004,30(2):58-60.
[6] 刘云峰,齐欢,代建民. 潜在语义分析在中文信息处理中的应用[J].计算机工程与应用,2005,(3):91-93.
[7] Latent semantic indexing tutorial [C/OL].[2016-01-07].http://www.miislita.com/information-retrieval-tutorial/Latentsemantic indexingtutorial.html.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!