中文    English

Journal of Library and Information Science in Agriculture ›› 2021, Vol. 33 ›› Issue (4): 58-67.doi: 10.13998/j.cnki.issn1002-1248.20-0670

;

• Research paper • Previous Articles     Next Articles

The Intelligent Diagnosis Model of Fruit Tree Disease Based on ResNet-50

JIN Ying1, YE Sa2,*, LI Honglei1   

  1. 1. School of Government Management, Liaoning Normal University, Dalian 116029;
    2. Institute of Agricultural Information, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-07-28 Online:2021-04-05 Published:2021-04-30

Abstract: [Purpose/Significance] Fruit tree diseases endanger the safety of agricultural production, and the use of artificial intelligence technologies to help fruit growers identify fruit tree diseases in a timely and accurate manner is of great significance to ensure safe agricultural production. [Method/Process] Using 10 000 fruit tree leaf diseased spots image data sets, through image enhancement methods such as rotation, pollution, noise enhancement, and cutting to improve the diversity of sample images; using the ResNet-50 deep convolutional network model to perform machine learning to obtain the fruit tree diseases identification model, and develop application software based on this model to provide online diagnostic services. [Results/Conclusions] The experimental results show that the average recognition rate of the four fruit tree diseases reached 92.9%, which has a better diagnostic effect compared with related research results.

Key words: ResNet-50, image recognition, fruit tree disease, intelligent diagnosis

CLC Number: 

  • G249.2
[1] 祁钊, 江朝晖, 杨春合, 等. 基于图像技术的玉米叶部病害识别研究[J]. 安徽农业大学学报, 2016, 43(2):167-172.
QI Z, JIANG Z H, YANG C H, et al.Identification of maize leaf diseases based on image technology[J]. Journal of Anhui agricultural university, 2016, 43(2): 167-172.
[2] 刘浩洲, 陈礼鹏, 穆龙涛, 等. 基于K-means聚类的猕猴桃花朵识别方法[J]. 农机化研究, 2020, 42(2): 22-26.
LIU H Z, CHEN L P, MU L T, et al.A recognition method of kiwifruit flowers based on K-means clustering[J]. Journal of agricultural mechanization research, 2020, 42(2): 22-26.
[3] 毕傲睿. 苹果叶子病害图像识别系统的设计与实现[D]. 西安: 西安建筑科技大学, 2014.
BI A R.Design and implementation of apple-leaf disease image recognition system[D]. Xi'an: Xi'an university of architecture and 4 technology, 2014.
[4] 屈赟, 陶晡, 王政嘉, 等. 基于Android的苹果叶部病害识别系统设计[J]. 河北农业大学学报, 2015, 38(6): 102-106.
QU Y, TAO B, WANG Z J, et al.Design of apple leaf disease recognition system based on Android[J]. Journal of Hebei agricultural university, 2015, 38(6): 102-106.
[5] 刘双. 基于数字图像的农业害虫精准检测算法的研究——以菜蝽检测为例[D]. 雅安: 四川农业大学, 2014.
LIU S.Study on exact pest detection algorithm based on digital image - Illustrated by the case of Eurydema dominulus. Yaan: Sichuan agricultural university, 2014.
[6] 卢柳江, 匡迎春, 陈兰鑫, 等. 基于级联AdaBoost分类器的农作物虫害图像识别研究[J]. 中国农机化学报, 2019, 40(8): 127-131.
LU L J, KUANG Y C, CHEN L X, et al.Research on pest recogni-tion based on cascaded AdaBoost classifier[J]. Journal of Chinese agricultural mechanization, 2019, 40(8): 127-131.
[7] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[8] 吕盛坪, 李灯辉, 冼荣亨. 深度学习在我国农业中的应用研究现状[J]. 计算机工程与应用, 2019, 55(20): 24-33, 51.
LV S P, LI D H, XIAN R H.Research Status of Deep Learning in Agriculture of China[J]. Computer engineering and applications, 2019, 55(20): 24-33, 51.
[9] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20):169-176.
HUANG S P, SUN C, QI L, et al.Rice panicle blast identification method based on deep convolution neural network[J]. Transactions of the Chinese society of agricultural engineering, 2017, 33(20): 169-176.
[10] 李艳. 基于改进CNN的马铃薯病害识别算法[J]. 信息通信, 2017, 6: 46-48.
LI Y.Potato disease recognition algorithm based on improved CNN[J]. Information & communications, 2017, 6: 46-48.
[11] 李淼, 王敬贤, 李华龙, 等. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55.
LI M, WANG J X, LI H L, et al.Method for identifying crop disease based on CNN and transfer learning[J]. Smart agriculture, 2019, 1(3): 46-55.
[12] 王细萍, 黄婷, 谭文学, 等. 基于卷积网络的苹果病变图像识别方法[J]. 计算机工程, 2015, 41(12): 293-298.
WANG X P, HUANG T, TAN W X, et al.Apple lesion image recognition method based on convolutional network[J]. Computer engineering, 2015, 41(12): 293-298.
[13] 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 167-177.
ZHANG J H, KONG F T, WU J Z, et al.Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China agricultural university, 2018, 23(11): 167-177.
[14] 蒋丰千, 李旸, 余大为, 等. 基于Caffe卷积神经网络的大豆病害检测系统[J]. 浙江农业学报, 2019, 31(7): 1177-1183.
JIANG F Q, LI Y, YU D W, et al.Soybean disease detection system based on convolutional neural network under Caffe framework[J]. Acta agriculturae Zhejiangensis, 2019, 31(7): 1177-1183.
[15] 王梅嘉, 何东健, 任嘉琛. 基于Android平台的苹果叶病害远程识别系统[J]. 计算机工程与设计, 2015, 36(9): 2585-2590.
WANG M J, HE D J, REN J C.Remote recognition of apple leaf disease based on Android platform[J]. Computer engineering and design, 2015, 36(9): 2585-2590.
[16] 邱靖, 刘继荣, 曹志勇, 等. 基于卷积神经网络的水稻病害图像识别研究[J]. 云南农业大学学报(自然科学), 2019, 34(5): 884-888.
QIU J, LIU J R, CAO Z Y, et al.Rice disease image recognition research based on convolutional neural network[J]. Journal of Yun-nan agricultural university (natural science), 2019, 34(5): 884-888.
[17] 中国工程科技知识中心. 农业专业知识服务系统作物病虫害图谱库[EB/OL].[2020-05-21]. http://agri.ckcest.cn/specialtyresources/list29-1.html.
CKCEST. Image database of crop disease of agricultural knowledge service system[EB/OL]. [2020-05-21]. http://agri.ckcest.cn/specialtyresources/list29-1.html.
[18] BRUZZONE L, SERPICO S B.Classification of imbalanced remote-sensing data by neural networks[J]. Pattern recognition letters, 1997, 18(11): 323-1328.
[19] FRANCISCO J P, ANTONIO J R, FRANCISCO C, et al.On the impact of imbalanced data in convolutional neural networks perfor-mance[C]. International conference on hybrid artificial intelligence systems, Springer, Cham, 2017: 220-232.
[20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[C]//International conference on neural information processing systems. Curran associates Inc. 2012: 1097-1105.
[21] Google brain. TensorFlow: A system for large-scale machine learning[C]. International conference on learning representations, 2016: 1-18.
[22] IOFFE S, SZEGEDY C.Batch normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL].[2018-12-29].https://arxiv.org/abs/1502.03167.
[23] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]. In proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778.
[24] REDMON J, FARHADI A.YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on computer vision and pattern recognition (CVPR). USA: IEEE, 2017: 6517-6525.
[25] 杨观赐, 杨静, 李少波, 等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版), 2018, 46(7):122-127.
YANG G, YANG J, LI S B, et al.Improved CNN algorithm based on dropout and ADAM optimizer[J]. Journal of Huazhong university of science and technology (Natural science edition), 2018, 46(7): 122-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!