中文    English

Journal of library and information science in agriculture

   

Aspect-Level Sentiment Analysis of Science and Technology Policy Reviews Based on Large Language Models: A Case Study of the New Energy Vehicle Industry

LI Xinxin1, MA Yumeng2,3(), JU Zihan3, WANG Jing4   

  1. 1. Xi'an Jiaotong University Library, Xi'an 710061
    2. National Science Library, Chinese Academy of Sciences, Beijing 100190
    3. Department of Information Management, Peking University, Beijing 100871
    4. Party School of Anhui Provincial Committee of C. P. C/Anhui Academy of Governance Library, Hefei 230022
  • Received:2025-07-21 Online:2025-10-21
  • Contact: MA Yumeng

Abstract:

[Purpose/Significance] In recent years, the rapid rise of large language model technology has shown significant advantages in understanding semantic context and capturing multidimensional sentiment tendencies. This study explores an aspect-level sentiment analysis method for science and technology policy comments based on large language models, aiming to uncover latent knowledge within these texts and provide data support for evaluating the effectiveness and subsequent optimization of policies. [Method/Process] Taking the electric vehicle industry as an example, a burgeoning sector vital to achieving the "dual carbon" goals and promoting green low-carbon development, this study proposed a policy satisfaction evaluation model. The model uses large language models for fine-grained aspect-level sentiment analysis of policy comment texts. The process includes the following steps: 1) Data collection and preprocessing: Comments related to electric vehicle policies were collected from the "Interactive Topics" section of the "Autohome" website using Python. Deep learning techniques were applied to set rules for the comment texts and automatically add punctuation marks to Chinese texts for data pre-processing. 2) Aspect word extraction: The steps include text tokenization, determining a candidate aspect word set, expanding the aspect word set, and clustering aspect words. A total of 3 405 aspect words were extracted from 35 000 comments, forming six clusters: infrastructure construction, vehicle performance configuration, national policies, technological development, automotive safety, and automotive sales market. Aspect-level sentences were extracted using aspect words and punctuation information, with a subset of sentences manually labeled to build training and validation corpora, resulting in 14 911 aspect-level sentences. 3) Sentiment tendency recognition model training: A prompt template for aspect-level sentiment classification tasks was designed, and the LoRA method was used to fine-tune the large language model with the manually labeled training set. The model's performance was evaluated using a validation set, resulting in the classification of comments on electric vehicle policies into positive, neutral, and negative sentiments. 4) Comparative experiment: The fine-tuned large model was compared with the mainstream sentiment classification model, BERT, to assess the performance of different models in aspect-level sentiment classification tasks. [Results/Conclusions] The results show that compared to the BERT model, the proposed method outperformed other methods in multiple metrics, including accuracy, recall, and F1 score, with improvements of 11.49%, 12.43% and 11.43%, respectively. Overall, public attention is higher towards vehicle performance configuration and automotive sales market, while infrastructure construction receives the lowest attention. The overall public satisfaction with electric vehicles is relatively low, with negative comments outweighing positive comments across all aspects, consistent with the "negative bias" theory in social psychology. Satisfaction issues are particularly prominent in the areas of automotive safety and infrastructure construction. Finally, policy recommendations have been proposed to optimize electric vehicle subsidy policies, strengthen policy promotion, improve infrastructure construction, and enhance after-sales service support systems.

Key words: science and technology policy review, aspect-level sentiment analysis, policy attention, policy satisfaction, large language model

CLC Number: 

  • G353.1

Fig.1

An overall research framework for aspect-level sentiment analysis of science and technology policy reviews based on a large language model"

Fig.2

New energy vehicle policy review aspect word theme clustering"

Table 1

New energy vehicle policy review aspect word clusters"

方面词类别 数量/个 示例
基础设施建设 428 充电桩配备、移动充电站、换电站、汽车之家、充电停车位…
汽车性能配置 645 车载系统、动能回收、续航里程、电池衰减、巡航定速…
国家相关政策 574 补贴标准、骗补、补贴退坡机制、节能减排、限牌限行…
技术发展 676 锂离子电池、磷酸铁锂电池、乙醇燃料、电池储能技术…
汽车安全 458 电池故障、自燃风险、电池报废处理、刹车系统失灵…
汽车销售市场 624 更换电池成本、经销商服务、综合性价比、售后保障…

Fig.3

Prompt template for sentiment recognition based on a large language model"

Table 2

Distribution of policy review aspect-level sentiment dataset"

方面 情感极性 样本数量/个
基础设施建设 积极 11
中性 10
消极 10
汽车性能配置 积极 8
中性 9
消极 12
国家相关政策 积极 10
中性 10
消极 11
技术发展 积极 9
中性 11
消极 11
汽车安全 积极 11
中性 10
消极 10
汽车销售市场 积极 11
中性 10
消极 11

Table 3

Instructions for fine-tuning experimental parameter settings"

超参数 参数值
stage sft
model_name_or_path Qwen2.5-7B
do_train true
template qwen
finetuning_type lora
lora_target all
overwrite_cache true
per_device_train_batch_size 1
gradient_accumulation_steps 8
lr_scheduler_type cosine
logging_steps 2
save_steps 2
learning_rate 1.0e-4
num_train_epochs 30

Fig.4

Loss curve of instruction fine-tuning experiment for policy review aspect-level sentiment analysis task"

Table 4

Comparison of experimental results on sentiment classification of policy reviews"

情感类型 Precision Recall F1
Qwen 2.5-7B BERT Qwen 2.5-7B BERT Qwen 2.5-7B BERT
积极 84.73 77.18 83.15 73.20 83.87 75.14
中性 69.20 54.39 78.11 65.46 73.39 59.43
消极 78.38 66.28 68.52 53.81 73.17 59.89
平均 77.44 65.95 76.59 64.16 77.03 65.60

Table 5

Sentimental distribution of online reviews of new energy vehicles"

方面 情感极性 评论语句数量/条
基础设施建设 积极 275
中性 448
消极 838
汽车性能配置 积极 1 190
中性 1 110
消极 1 785
国家相关政策 积极 412
中性 631
消极 876
技术发展 积极 704
中性 534
消极 1 014
汽车安全 积极 262
中性 740
消极 1 237
汽车销售市场 积极 765
中性 746
消极 1 344

Fig.5

Number of comments and attention proportion by each aspect"

Fig.6

Number of comments and attention proportion in various fields since 2014"

Fig.7

Sentiment distribution of the number of comment sentences in each aspect"

[1]
郑新曼, 董瑜. 政策文本量化研究的综述与展望[J]. 现代情报, 2021, 41(2): 168-177.
ZHENG X M, DONG Y. Review on quantitative analysis of political texts[J]. Journal of modern information, 2021, 41(2): 168-177.
[2]
孙坦, 张智雄, 周力虹, 等. 人工智能驱动的第五科研范式(AI4S)变革与观察[J]. 农业图书情报学报, 2023, 35(10): 4-32.
SUN T, ZHANG Z X, ZHOU L H, et al. The transformation and observations of AI for science (AI4S) driven by artificial intelligence[J]. Journal of library and information science in agriculture, 2023, 35(10): 4-32.
[3]
赵瑞雪, 黄永文, 马玮璐, 等. ChatGPT对图书馆智能知识服务的启示与思考[J]. 农业图书情报学报, 2023, 35(1): 29-38.
ZHAO R X, HUANG Y W, MA W L, et al. Insights and reflections of the impact of ChatGPT on intelligent knowledge services in libraries[J]. Journal of library and information science in agriculture, 2023, 35(1): 29-38.
[4]
王恒, 唐孝国, 郭俊亮. 基于电商评价的文本情感分析研究与应用[J]. 黑龙江科学, 2022, 13(12): 29-31.
WANG H, TANG X G, GUO J L. Research and application of text sentiment analysis based on E-commerce evaluation[J]. Heilongjiang science, 2022, 13(12): 29-31.
[5]
王钦炀, 施水才, 王洪俊. 文本情感分析综述[J]. 软件导刊, 2025, 24(1): 193-202.
WANG Q Y, SHI S C, WANG H J. A review of textual sentiment analysis[J]. Software guide, 2025, 24(1): 193-202.
[6]
ARAUJO A F, GÔLO M P S, MARCACINI R M. Opinion mining for app reviews: An analysis of textual representation and predictive models[J]. Automated software engineering, 2021, 29(1): 5.
[7]
霍朝光, 尹卓, 杨媛, 等. 基于大模型的政策反讽评论自动识别方法研究[J]. 情报学报, 2024, 43(12): 1414-1424.
HUO C G, YIN Z, YANG Y, et al. Automatic identification method of policy irony comments based on large language models[J]. Journal of the China society for scientific and technical information, 2024, 43(12): 1414-1424.
[8]
中国政府网. 新能源汽车是我国汽车产业高质量发展的战略选择[EB/OL]. [2025-05-20].
/content_ 6887665.htm.
[9]
ARAQUE O, ZHU G G, IGLESIAS C A. A semantic similarity-based perspective of affect lexicons for sentiment analysis[J]. Knowledge-based systems, 2019, 165: 346-359.
[10]
ASGHAR M Z, KHAN A, AHMAD S, et al. Lexicon-enhanced sentiment analysis framework using rule-based classification scheme[J]. PLoS one, 2017, 12(2): e0171649.
[11]
ASGHAR M Z, AHMAD S, QASIM M, et al. SentiHealth: Creating health-related sentiment lexicon using hybrid approach[J]. SpringerPlus, 2016, 5(1): 1139.
[12]
HAN K X, WEI C E, CHIU C C, et al. Application of support vector machine (SVM) in the sentiment analysis of twitter dataset[J]. Applied sciences, 2020, 10(3): 1125.
[13]
NGUYEN T H, SHIRAI K. Aspect-based sentiment analysis using tree kernel based relation extraction[C]//Computational Linguistics and Intelligent Text Processing. Cham: Springer, 2015: 114-125.
[14]
KANG H, YOO S J, HAN D. Senti-lexicon and improved naïve bayes algorithms for sentiment analysis of restaurant reviews[J]. Expert systems with applications, 2012, 39(5): 6000-6010.
[15]
OSMANI A, MOHASEFI J B, GHAREHCHOPOGH F S. Enriched latent dirichlet allocation for sentiment analysis[J]. Expert systems, 2020, 37(4): e12527.
[16]
LI H C, MA Y, MA Z S, et al. Weibo text sentiment analysis based on BERT and deep learning[J]. Applied sciences, 2021, 11(22): 10774.
[17]
SONG M, PARK H, SHIN K S. Attention-based long short-term memory network using sentiment lexicon embedding for aspect-level sentiment analysis in Korean[J]. Information processing & management, 2019, 56(3): 637-653.
[18]
KARDAKIS S, PERIKOS I, GRIVOKOSTOPOULOU F, et al. Examining attention mechanisms in deep learning models for sentiment analysis[J]. Applied sciences, 2021, 11(9): 3883.
[19]
SACHIN S, TRIPATHI A, MAHAJAN N, et al. Sentiment analysis using gated recurrent neural networks[J]. SN computer science, 2020, 1(2): 74.
[20]
MAHADEVASWAMY U B, SWATHI P. Sentiment analysis using bidirectional LSTM network[J]. Procedia computer science, 2023, 218: 45-56.
[21]
POTA M, VENTURA M, FUJITA H, et al. Multilingual evaluation of pre-processing for BERT-based sentiment analysis of tweets[J]. Expert systems with applications, 2021, 181: 115119.
[22]
MUHAMMADI R H, LAKSANA T G, ARIFA A B. Combination of support vector machine and lexicon-based algorithm in twitter sentiment analysis[J]. Khazanah Informatika: Jurnal ilmu komputer dan informatika, 2022, 8(1): 59-71.
[23]
HUANG M H, XIE H R, RAO Y H, et al. Lexicon-based sentiment convolutional neural networks for online review analysis[J]. IEEE transactions on affective computing, 2022, 13(3): 1337-1348.
[24]
黄萃, 吕立远. 文本分析方法在公共管理与公共政策研究中的应用[J]. 公共管理评论, 2020, 2(4): 156-175.
HUANG C, LV L Y. The application of text analysis to public management and policy research[J]. China public administration review, 2020, 2(4): 156-175.
[25]
SLAPIN J B, PROKSCH S O. A scaling model for estimating time-series party positions from texts[J]. American journal of political science, 2008, 52(3): 705-722.
[26]
赵雅莹, 郭继荣, 车向前. 评价理论视角下英国对“一带一路”态度研究[J]. 情报杂志, 2016, 35(10): 37-41.
ZHAO Y Y, GUO J R, CHE X Q. An analysis of Britain's attitude towards the "one belt and one road initiative" from the perspective of appraisal theory[J]. Journal of intelligence, 2016, 35(10): 37-41.
[27]
LI Z Y, DAI Y L, LI X L. Construction of sentimental knowledge graph of Chinese government policy comments[J]. Knowledge management research & practice, 2022, 20(1): 73-90.
[28]
武俊宏, 赵阳, 宗成庆. ChatGPT能力分析与未来展望[J]. 中国科学基金, 2023, 37(5): 735-742.
WU J H, ZHAO Y, ZONG C Q. Analysis of ChatGPT's capabilities and future prospects[J]. Bulletin of national natural science foundation of China, 2023, 37(5): 735-742.
[29]
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, BC, Canada. ACM, 2020: 1877-1901.
[30]
李逸飞, 张玲玲, 董宇轩, 等. 基于大语言模型增强表征对齐的小样本持续关系抽取方法[J]. 计算机科学与探索, 2024, 18(9): 2326-2336.
LI Y F, ZHANG L L, DONG Y X, et al. Large language model augmentation and feature alignment method for few-shot continual relation extraction[J]. Journal of frontiers of computer science and technology, 2024, 18(9): 2326-2336.
[31]
李诗晨, 王中卿, 周国栋. 大语言模型驱动的跨领域属性级情感分析[J]. 软件学报, 2025, 36(2): 644-659.
LI S C, WANG Z Q, ZHOU G D. LLM enhanced cross domain aspect-based sentiment analysis[J]. Journal of software, 2025, 36(2): 644-659.
[32]
李居昊, 石磊, 丁锰, 等. 基于大语言模型的社交媒体文本立场检测[J]. 计算机科学与探索, 2025, 19(5): 1302-1312.
LI J H, SHI L, DING M, et al. Social media text stance detection based on large language models[J]. Journal of frontiers of computer science and technology, 2025, 19(5): 1302-1312.
[33]
李向明. 跨文化背景下大语言模型的文本生成与情感表达能力分析[J]. 外语电化教学, 2024(4): 25-31, 104.
LI X M. Text and sentiment analysis of content generated by LLM representing cross-cultural contexts[J]. Technology enhanced foreign language education, 2024(4): 25-31, 104.
[34]
Github. Punctuation model[EB/OL]. [2024-12-17].
[35]
Github. TudouNLP[EB/OL]. [2024-12-17].
[36]
李蕾, 彭慧, 刘晓娟. 大语言模型细粒度评论挖掘下的博物馆服务用户满意度研究[J]. 图书情报工作, 2024, 68(17): 54-67.
LI L, PENG H, LIU X J. Research on user satisfaction of museum service based on fine-grained comment mining of large language model[J]. Library and information service, 2024, 68(17): 54-67.
[37]
MCCOMBS M E, SHAW D L. The agenda-setting function of mass media[J]. The public opinion quarterly, 1972, 36(2): 176-187.
[38]
ASUR S, HUBERMAN B A. Predicting the future with social media[C]//2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Toronto, ON, Canada: IEEE, 2010: 492-499.
[39]
宋恩梅, 朱梦娴. 社会化媒体信息分布规律研究: 以电影评论为例[J]. 信息资源管理学报, 2015, 5(3): 25-36.
SONG E M, ZHU M X. Magpies' tweets: The distribution law of film reviews on the social media[J]. Journal of information resources management, 2015, 5(3): 25-36.
[40]
BAUMEISTER R F, BRATSLAVSKY E, FINKENAUER C, et al. Bad is stronger than good[J]. Review of general psychology, 2001, 5(4): 323-370.
[1] ZHANG Li, WANG Bo, JING Shui. Generative AI-Driven Resource Discovery in Public Libraries: Service Optimization Based on a Dynamic Evaluation Model [J]. Journal of library and information science in agriculture, 2025, 37(5): 58-71.
[2] QIAN Li, WANG Qianying, LIU Yi, ZHANG Yuanzhe, CHANG Zhijun. Agent Technology and Its Applications in Scientific Research [J]. Journal of library and information science in agriculture, 2025, 37(5): 5-14.
[3] LIU Wei, ZHANG Lei, JI Ting, CHEN Xiaoyang. Shaping the Smart Libraries with AI: An Agent-based, Next-Generation Library Service Platform [J]. Journal of library and information science in agriculture, 2025, 37(5): 15-26.
[4] SANG Yuanyuan. Multimodal Learning Technology Aimed at Exploring the Innovative Path of Library Intelligence Service [J]. Journal of library and information science in agriculture, 2025, 37(3): 42-52.
[5] CAI Yiran, HU Zhengyin, LIU Chunjiang. Analysis of Progress in Data Mining of Scientific Literature Using Large Language Models [J]. Journal of library and information science in agriculture, 2025, 37(2): 4-22.
[6] Haoxian WANG, Ziming ZHOU, Feifei DING, Chengfu WEI. Digital Humanities & Large Language Models: Practice and Research in Semantic Retrieval of Ancient Documents [J]. Journal of library and information science in agriculture, 2024, 36(9): 89-101.
[7] Huaming LI. Opportunities and Challenges: The Use of ChatGPT in Enabling Library Knowledge Services [J]. Journal of library and information science in agriculture, 2024, 36(8): 96-105.
[8] JIANG Peng, REN Yan, ZHU Beiling. Exploration and Practice of Classification Indexing Combined with Large Language Models [J]. Journal of library and information science in agriculture, 2024, 36(5): 32-42.
[9] HUO Mengjia, LIU Juan, Huang Jie. Construction and Application of the Attention Analysis Model of Brand Management Policies of Agricultural Products with Geographical Indications [J]. Journal of library and information science in agriculture, 2023, 35(7): 94-104.
[10] SHOU Jianqi. Towards Known Unknowns: GPT Large Language Models Empower Human-Centered Information Retrieval [J]. Journal of library and information science in agriculture, 2023, 35(5): 16-26.
[11] GUO Pengrui, WEN Tingxiao. Research of the Impact of LLMs on Information Retrieval Systems and Users' Information Retrieval Behavior [J]. Journal of library and information science in agriculture, 2023, 35(11): 13-22.
[12] ZHAO Ruixue, HUANG Yongwen, MA Weilu, DONG Wenjia, XIAN Guojian, SUN Tan. Insights and Reflections of the Impact of ChatGPT on Intelligent Knowledge Services in Libraries [J]. Journal of library and information science in agriculture, 2023, 35(1): 29-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!