中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (9): 63-81.doi: 10.13998/j.cnki.issn1002-1248.25-0513

Previous Articles    

An LLM-based Data Augmentation Method for Constructing Science & Technology Topic Linkages: Taking the Energy Conservation Field as an Example

WANG Xiaoyu1, HU Jingyuan1, WU Ruoyu1, WANG Shu2, ZHAI Yujia3   

  1. 1. Dongbei University of Finance and Economics, Dalian 116025
    2. Dalian University of Technology, Dalian 116024
    3. Management School of Tianjin Normal University, Tianjin 330387
  • Received:2025-09-23 Online:2025-09-05 Published:2025-12-08

Abstract:

[Purpose/Significance] In the contemporary era of rapid technological advancement, understanding the intrinsic linkages between scientific research and technological innovation is critical for guiding strategic decision-making, optimizing resource allocation, and promoting effective technology transfer. Scientific publications and patents represent two complementary yet heterogeneous knowledge sources, with distinct linguistic styles, terminologies, and documentation structures, which often create a significant semantic gap. Traditional methods of linking scientific and technological (S&T) knowledge rely primarily on lexical overlap, keyword co-occurrence, or citation analysis. These methods are limited in their ability to capture deeper semantic relationships, particularly across non-homologous texts. To address this challenge, this study proposes a novel approach leveraging large language models (LLMs) for data augmentation, aiming to uncover latent semantic associations between research paper topics and patent topics. The key innovation of this work lies in using LLMs not merely for text generation but as a semantic bridge to enhance cross-domain knowledge alignment, thereby advancing the methodological toolkit for science-technology linkage studies. This approach offers potential contributions to knowledge mapping, thematic analysis, and strategic innovation management, particularly in areas where domain-specific terminology or conceptual divergence hampers conventional analyses. [Method/Process] The proposed method employs ChatGPT-4 as a knowledge-enriched intermediary to generate semantically enhanced textual variants of existing S&T documents in the energy-saving domain. Specifically, the LLM was used to perform synonym-based paraphrasing, expansion, and semantic inference on research paper abstracts and patent summaries, producing augmented texts that retain domain relevance while highlighting latent semantic connections. These enhanced texts were used to extract features that were subsequently incorporated into a non-patent citation prediction task, which serves as a practical evaluation of the method's effectiveness. By comparing predicted associations against existing citation links, the study assesses the capacity of LLM-derived features to capture cross-domain topic relatedness beyond lexical similarity. The approach relies on the theoretical premise that LLMs can model high-level semantic patterns, enabling the inference of conceptual correspondence even when explicit terminology differs between scientific and technological texts. [Results/Conclusions] The experimental validation process involved four baseline models, and it was found that features derived from the augmented texts consistently improved prediction performance. The area under the ROC curve (AUC) increased by 13.91%, 16.90%, 16.21%, and 15.69% across the four models, respectively, demonstrating the efficacy of LLM-based data augmentation in bridging the semantic gap between S&T knowledge. These results suggest that the method can uncover latent topic associations, facilitate cross-domain term alignment, and support knowledge discovery tasks that conventional lexical-based approaches may overlook. However, the study is limited by its focus on a single application domain, leaving open questions regarding generalizability across multiple S&T fields. Future work should extend the methodology to diverse domains, investigate the robustness of the LLM-generated semantic bridges, and explore automated mechanisms for scaling cross-domain knowledge integration. Overall, this research provides a promising framework for enhancing the semantic connectivity of heterogeneous knowledge sources. This contributes to a broader understanding of the interactions between science and technology and informs data-driven strategies for managing research and innovation.

Key words: large language model, data augmentation, S&T linkage, topic similarity

CLC Number: 

  • G350

Fig.1

Research framework for building technology links based on LLM data enhancement"

Table 1

Paper and patent details retrieved from energy conservation field"

数据库 检索规则 时间 数量/篇
WoS (TI = ((power-efficient) OR (energy efficiency) OR (low-power) OR (low-energy) OR (energy-saving) OR (fuel-efficient) OR (energy-conscious) OR (high-efficiency) OR (Low Power-Consumption) OR (energy efficient) OR (power allocation) OR (energy consumption) OR (smart grid) OR (smart metering) OR (enhancement of efficiency) OR (Energy Management) OR (Energy Performance) OR (Rational Use) OR (Electricity Consumption) OR (System Efficiency) OR (Energy Efficient Prosperity) OR (Eco-Power) OR (Energy-Efficient Window) OR (energy analysis) OR (efficiency factor) OR (Energy-saving awareness) OR (energy efficiency measures) OR (energy utilization) OR (energy conservation) OR (intelligent control) OR (energy demand) OR (sustainable energy) OR (energy policy) OR (energy efficient systems) OR (energy usage) OR (maximum efficiency) OR (energy efficiency ratio) OR (energy efficiency strategies) OR (energy simulation) OR (energy use) OR (energy storage) OR (energy forecasting) OR (consumption of energy) OR (Conscious use))) AND DT = Article 2014—2023年 148 143
USPTO IPC=(H01M OR H02J OR E04D OR E06B OR B62M OR F24H7/00 OR E04B1/74 OR E04B2/00 OR E04B1/62 OR E06B7/098 OR B64G1/44 OR B60L8/00 OR B60K16/00 OR B60L9/00 OR B60L11/18 OR B62D35/00 OR B60K6/20 OR B60K6/00 OR B61C1/00 OR E01C1/00 OR B63H19/02 OR B63H13/00 OR B63H9/00) 64 023

Fig.2

ChatGPT-4 prompt template design for data augmentation"

Fig.3

Prompt valuation based on text back-translation"

Fig.4

Evaluation framework of data augmentation strategy"

Fig.5

Paper distribution in the experimental dataset"

Table 2

Correlation feature indicators between papers and patents"

关联类型 特征维度 特征指标
文本内容关联 词汇 文本相似性(词汇)
语义 文本相似性(语义)
语境 文本相似性(语境)
增强文本关联 词汇 替换增强相似性(词汇)
语义 替换增强相似性(语义)
语境 生成增强相似性(语境)
词汇 改写增强相似性(词汇)
语义 改写增强相似性(语义)
语境 改写增强相似性(语境)
类目映射关联 -- “发明人-作者”相关性
-- “IPC-期刊”相关性

Table 3

Confusion matrix for citation prediction"

真实标签

1

(相关性高,连接)

0

(相关性低,不连接)

1(相关性高,连接) TP FN
0(相关性低,不连接) FP TN

Fig.6

Process of S&T linkage construction in energy conservation field based on DA texts"

Table 4

Evaluation result of prompt templates based on text back-translation"

增强策略 指令模板 ROUGE-1 ROUGE-2 ROUGE-S 提示模板
文本生成

基础指令

(角色+任务定义+实例)

35.06 6.41 4.22 "Multilingual and multidisciplinary patent...you will receive some English keywords, which come from a patent abstract. Based..."
+任务描述 34.51 5.96 4.03 "Generate text abstract of a specified word count... relevant to energy conservation... logically coherent, and fluently expressed, while including as many of the given keywords as possible..."
+上下文学习 34.05 5.81 3.92 "Structured excel input with: 'keyword' column... 'context' column..."
文本改写

基础指令

(角色+任务定义+实例)

49.92 18.33 9.95 "Multilingual and multidisciplinary patent...you will receive some English keywords, which come from a patent abstract. Based…"
+任务描述 49.96 18.96 11.08 "Write a professional academic abstract... relevant to the field of energy conservation, logically coherent... it must exclude the given..."
+上下文学习 50.54 19.65 11.30 "Structured excel input... read the abstract... to understand the semantic usage..."

Table 5

Descriptive statistical analysis of features"

关联类型 特征指标 缩写 均值 中位数 方差 最小值 最大值
文本内容关联 文本相似性(词汇) R e l e v a n c e B o W 0.078 0.000 0.013 6 0.000 0.806
文本相似性(语义) R e l e v a n c e B E R T 0.577 0.569 0.031 0.100 1.000
文本相似性(语境) R e l e v a n c e S - B E R T 0.280 0.270 0.023 0.000 0.951
增强文本关联 替换增强相似性(词汇) R e l e v a n c e _ S R B o W 0.021 0.000 0.009 0.000 0.745
替换增强相似性(语义) R e l e v a n c e _ S R B E R T 0.568 0.566 0.023 0.047 1.000
生成增强相似性(语境) R e l e v a n c e _ T G S - B E R T 0.342 0.316 0.036 0.000 0.898
改写增强相似性(词汇) R e l e v a n c e _ T R B o W 0.061 0.000 0.009 0.000 0.745
改写增强相似性(语义) R e l e v a n c e _ T R B E R T 0.578 0.569 0.030 0.097 1.000
改写增强相似性(语境) R e l e v a n c e _ T R S - B E R T 0.356 0.332 0.040 0.000 0.934
类目映射关联 发明人-作者相关性 I n v e n t o r 2 A u t h o r - - - - -
IPC-期刊相关性 I P C 2 I S I 0.039 0.000 0.018 0.000 0.945

Fig.7

Importance analysis for features"

Table 6

Experimental results of data augmentation features in citation prediction (AUC)"

特征类型 LR XGBoost RF SVM
原始文本&类目映射关联 0.784 2 0.793 5 0.803 2 0.806 4
+替换增强相似性 0.786 2 0.803 2 0.805 6 0.809 5
+生成增强相似性 0.870 7 0.886 9 0.896 5 0.890 6
+改写增强相似性 0.893 3 0.927 6 0.933 4 0.932 9

Fig.8

Prediction results of baselines under difference text data augmentation strategies"

Table 7

Combined effect of features extracted from text generated by rewritten strategy (AUC)"

Baseline 特征组合
+词汇 +语义 +语境 +(词汇+语义) +(词汇+语境) +(语义+语境) 全部特征
LR 0.802 8 0.786 4 0.891 6 0.801 0 0.893 2 0.889 8 0.893 9
XGBoost 0.808 9 0.793 4 0.926 3 0.804 4 0.927 7 0.933 9 0.924 9
RF 0.823 5 0.810 9 0.938 1 0.812 0 0.937 0 0.936 8 0.939 2
SVM 0.821 9 0.813 4 0.932 8 0.825 0 0.936 9 0.932 8 0.933 2

Fig.9

Feature combination effect under the rewritten strategy of data augmentation"

Fig.10

Correlation between scientific and technological topics measured by different methods"

Table 8

Association ranking of scientific and technological topics"

编号 专利主题 论文主题 S i m D A ( i , j )排名 S i m O r i g i n a l ( i , j )排名 排名提升
1 Tech_0 Sci_1 2 354 352
2 Tech_2 Sci_37 36 347 311
3 Tech_14 Sci_68 32 330 298
4 Tech_26 Sci_68 47 314 267
5 Tech_19 Sci_12 71 345 274
6 Tech_16 Sci_68 73 271 198
7 Tech_2 Sci_12 24 222 198
8 Tech_22 Sci_16 8 221 213

Table 9

Scientific and technological topics with high correlation"

专利主题 专利主题词 论文主题 论文主题词
Tech_0 lithium, electrode, electrolyte, cathode, material, carbon, anode, polymer, composition, element Sci_1 battery, charge, cathode, zinc, anode, discharge, balance, charger, sulfur, ultracapacitor, vanadium
Tech_2 generator, grid, electricity, network, turbine, wind, distribute, utility, model, appliance Sci_37 investment, risk, market, uncertainty, reserve, stochastic, portfolio, bidding, trading, finance, variability
Tech_14 manufacture, process, invention, production, dispose, recycle, body, transition, extraction, waste Sci_68 nanofiber, cellulose, filtration, textile, electrospinne, aerosol, fabric, electrospun, cotton
Tech_26 filter, reduce, compress, suppression, vessel, suppress, expansion, filtration, float, expand Sci_68 nanofiber, cellulose, filtration, textile, electrospinne, aerosol, fabric, electrospun, cotton
Tech_19 cell, fuel, membrane, flow, catalyst, gas, hydrogen, stack, inlet, air Sci_12 efficiency, productivity, exergy, inefficiency, improvement, envelopment, agglomeration, cogeneration, rankine, frontier
Tech_16 storage, energy, housing, harvest, capacity, compartment, container, supercapacitor, accumulator, store Sci_68 nanofiber, cellulose, filtration, textile, electrospinne, aerosol, fabric, electrospun, cotton
Tech_2 generator, grid, electricity, network, turbine, wind, distribute, utility, model, appliance Sci_12 efficiency, productivity, exergy, inefficiency, improvement, envelopment, agglomeration, cogeneration, rankine, frontier
Tech_22 temperature, heat, coolant, cool, radiator, aerosol, induction, cigarette, vapor, exchange Sci_16 cooking, stove, cookstove, pot, kitchen, uptake, cooktop, fuzzification, cookfire, cookware, cuisine

Table 10

Key topic association results: Enhanced vs. traditional methods"

关联主题对

(专利-论文)

S i m D A ( i , j )

排名

S i m O r i g i n a l ( i , j )

排名

排名提升

(位次)

关联模式
Tech_0-Sci_1 2 354 352 锂电池:材料-系统性能(高度协同)
Tech_2-Sci_37 36 347 311 智能电网:技术-经济/风险(新兴交叉)
Tech_14-Sci_68 32 330 298 废弃物处理-纳米过滤(材料转化)
Tech_22-Sci_16 8 221 213 散热/热交换-能源使用效率
[1]
黄璐, 蔡依洁, 陈翔, 等. 组合优化视角下的科技关联识别方法研究[J]. 科学学与科学技术管理, 2024, 45(4): 118-136.
HUANG L, CAI Y J, CHEN X, et al. Looking for the best allocation of scientific and technological resources: A perspective of combinatorial optimization[J]. Science of science and management of S & T, 2024, 45(4): 118-136.
[2]
赵志耘, 雷孝平. 我国生物科技领域技术创新与基础研究关联分析: 从专利引文分析的角度[J]. 情报学报, 2012, 31(12): 1283-1289.
ZHAO Z Y, LEI X P. Analysis of scientific linkage between China's technology innovation and basic research in biotechnology industry based on patent citation[J]. Journal of the China society for scientific and technical information, 2012, 31(12): 1283-1289.
[3]
VERBEEK A, DEBACKERE K, LUWEL M, et al. Linking science to technology: Using bibliographic references in patents to build linkage schemes[J]. Scientometrics, 2002, 54(3): 399-420.
[4]
AHMADPOOR M, JONES B F. The dual frontier: Patented inventions and prior scientific advance[J]. Science, 2017, 357(6351): 583-587.
[5]
LI X, ZHAO D Z, HU X J. Gatekeepers in knowledge transfer between science and technology: An exploratory study in the area of gene editing[J]. Scientometrics, 2020, 124(2): 1261-1277.
[6]
CHANG S H. A pilot study on the connection between scientific fields and patent classification systems[J]. Scientometrics, 2018, 114(3): 951-970.
[7]
HAN F, MAGEE C L. Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology[J]. Scientometrics, 2018, 116(2): 767-796.
[8]
CALLAERT J, VAN LOOY B, VERBEEK A, et al. Traces of Prior Art: An analysis of non-patent references found in patent documents[J]. Scientometrics, 2006, 69(1): 3-20.
[9]
MEYER M. Does science push technology Patents citing scientific literature[J]. Research policy, 2000, 29(3): 409-434.
[10]
MARAUT S, MARTÍNEZ C. Identifying author–inventors from Spain: Methods and a first insight into results[J]. Scientometrics, 2014, 101(1): 445-476.
[11]
SHIBATA N, KAJIKAWA Y, SAKATA I. Detecting potential technological fronts by comparing scientific papers and patents[J]. Foresight, 2011, 13(5): 51-60.
[12]
BA Z C, LIANG Z T. A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling[J]. Journal of informetrics, 2021, 15(3): 101167.
[13]
XU S, ZHAI D S, WANG F F, et al. A novel method for topic linkages between scientific publications and patents[J]. Journal of the association for information science and technology, 2019, 70(9): 1026-1042.
[14]
SELVA BIRUNDA S, KANNIGA DEVI R. A review on word embedding techniques for text classification[C]//Innovative Data Communication Technologies and Application. Singapore: Springer, 2021: 267-281.
[15]
YU D J, YAN Z P. Combining machine learning and main path analysis to identify research front: From the perspective of science-technology linkage[J]. Scientometrics, 2022, 127(7): 4251-4274.
[16]
XU H Y, YUE Z H, PANG H S, et al. Integrative model for discovering linked topics in science and technology[J]. Journal of informetrics, 2022, 16(2): 101265.
[17]
车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学: 信息科学, 2023, 53(9): 1645-1687.
CHE W X, DOU Z C, FENG Y S, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: Challenges, opportunities and future directions[J]. Scientia sinica (informationis), 2023, 53(9): 1645-1687.
[18]
LIU X Z, XIA T, YU Y Y, et al. Cross social media recommendation[J]. Proceedings of the international AAAI conference on web and social media, 2016, 10(1): 221-230.
[19]
罗文, 王厚峰. 大语言模型评测综述[J]. 中文信息学报, 2024, 38(1): 1-23.
LUO W, WANG H F. Evaluating large language models: A survey of research progress[J]. Journal of Chinese information processing, 2024, 38(1): 1-23.
[20]
黄鲁成, 王静静, 李欣, 等. 基于论文和专利的钙钛矿太阳能电池的技术机会分析[J]. 情报学报, 2016, 35(7): 686-695.
HUANG L C, WANG J J, LI X, et al. Detecting technology opportunities based on papers and patents for perovskite solar cells[J]. Journal of the China society for scientific and technical information, 2016, 35(7): 686-695.
[21]
CHOUDHURY N, FAISAL F, KHUSHI M. Mining temporal evolution of knowledge graphs and genealogical features for literature-based discovery prediction[J]. Journal of informetrics, 2020, 14(3): 101057.
[22]
CHEN X, YE P F, HUANG L, et al. Exploring science-technology linkages: A deep learning-empowered solution[J]. Information processing & management, 2023, 60(2): 103255.
[23]
刘自强, 许海云, 罗瑞, 等. 基于主题关联分析的科技互动模式识别方法研究[J]. 情报学报, 2019, 38(10): 997-1011.
LIU Z Q, XU H Y, LUO R, et al. Research on scientific and technological interaction patterns based on topic relevance analysis[J]. Journal of the China society for scientific and technical information, 2019, 38(10): 997-1011.
[24]
冉从敬, 田文芳, 贾志轩. 基于混合方法的“科学论文-专利技术”关联关系模型构建: 以生物医药领域为例[J]. 情报科学, 2024, 42(6): 132-143.
RAN C J, TIAN W F, JIA Z X. Modeling of scientific paper-patent technology association relationship based on mixed methods: Taking the biomedical field as an example[J]. Information science, 2024, 42(6): 132-143.
[25]
REYNOLDS L, MCDONELL K. Prompt programming for large language models: Beyond the few-shot paradigm[C]//Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. May 8 - 13, 2021, Yokohama, Japan. ACM, 2021: 1-7.
[26]
YAO S Y, YU D, ZHAO J, et al. Tree of thoughts: Deliberate problem solving with large language models[EB/OL]. 2023
[27]
陆伟, 刘寅鹏, 石湘, 等. 大模型驱动的学术文本挖掘: 推理端指令策略构建及能力评测[J]. 情报学报, 2024, 43(8): 946-959.
LU W, LIU Y P, SHI X, et al. Large language model-driven academic text mining: Construction and evaluation of inference-end prompting strategy[J]. Journal of the China society for scientific and technical information, 2024, 43(8): 946-959.
[28]
张颖怡, 章成志, 周毅, 等. 基于ChatGPT的多视角学术论文实体识别: 性能测评与可用性研究[J]. 数据分析与知识发现, 2023, 7(9): 12-24.
ZHANG Y Y, ZHANG C Z, ZHOU Y, et al. ChatGPT-based scientific paper entity recognition: Performance measurement and availability research[J]. Data analysis and knowledge discovery, 2023, 7(9): 12-24.
[29]
吴娜, 沈思, 王东波. 基于开源LLMs的中文学术文本标题生成研究: 以人文社科领域为例[J]. 情报科学, 2024, 42(7): 137-145.
WU N, SHEN S, WANG D B. Chinese academic text title generation based on open source large language models: Taking the field of humanities and social sciences as an example[J]. Information science, 2024, 42(7): 137-145.
[30]
DONG C H, LI Y H, GONG H F, et al. A survey of natural language generation[J]. ACM computing surveys, 2022, 55(8): 1-38.
[31]
DAI H X, LIU Z L, LIAO W X, et al. AugGPT: Leveraging ChatGPT for text data augmentation[J/OL]. arXiv: 2302.13007,2023.
[32]
张恒, 赵毅, 章成志. 基于SciBERT与ChatGPT数据增强的研究流程段落识别[J]. 情报理论与实践, 2024, 47(1): 164-172, 153.
ZHANG H, ZHAO Y, ZHANG C Z. Recognition of research workflow paragraphs based on SciBERT and ChatGPT data augmentation[J]. Information studies: Theory & application, 2024, 47(1): 164-172, 153.
[33]
MENG K, BA Z C, MA Y X, et al. A network coupling approach to detecting hierarchical linkages between science and technology[J]. Journal of the association for information science and technology, 2024, 75(2): 167-187.
[34]
DING B S, QIN C W, ZHAO R C, et al. Data augmentation using LLMs: Data perspectives, learning paradigms and challenges[C]//Findings of the Association for Computational Linguistics ACL 2024. Bangkok, Thailand and virtual meeting. Stroudsburg, PA, USA: ACL, 2024: 1679-1705.
[35]
LIN C Y. ROUGE: A package for automatic evaluation of summaries[C]//Annual Meeting of the Association for Computational Linguistics., 2004
[36]
SHARMA P, LI Y B. Self-supervised contextual keyword and keyphrase retrieval with self-labelling[EB/OL]. [2025-06-12].
[37]
REIMERS N, GUREVYCH I. Sentence-BERT: Sentence embeddings using Siamese BERT-networks[J/OL]. arXiv: 1908.10084, 2019.
[38]
DAIR AI. Prompt engineering guide[EB/OL]. [2023-12-14].
[1] ZHANG Li, WANG Bo, JING Shui. Generative AI-Driven Resource Discovery in Public Libraries: Service Optimization Based on a Dynamic Evaluation Model [J]. Journal of library and information science in agriculture, 2025, 37(5): 58-71.
[2] QIAN Li, WANG Qianying, LIU Yi, ZHANG Yuanzhe, CHANG Zhijun. Agent Technology and Its Applications in Scientific Research [J]. Journal of library and information science in agriculture, 2025, 37(5): 5-14.
[3] LIU Wei, ZHANG Lei, JI Ting, CHEN Xiaoyang. Shaping the Smart Libraries with AI: An Agent-based, Next-Generation Library Service Platform [J]. Journal of library and information science in agriculture, 2025, 37(5): 15-26.
[4] SANG Yuanyuan. Multimodal Learning Technology Aimed at Exploring the Innovative Path of Library Intelligence Service [J]. Journal of library and information science in agriculture, 2025, 37(3): 42-52.
[5] CAI Yiran, HU Zhengyin, LIU Chunjiang. Analysis of Progress in Data Mining of Scientific Literature Using Large Language Models [J]. Journal of library and information science in agriculture, 2025, 37(2): 4-22.
[6] Haoxian WANG, Ziming ZHOU, Feifei DING, Chengfu WEI. Digital Humanities & Large Language Models: Practice and Research in Semantic Retrieval of Ancient Documents [J]. Journal of library and information science in agriculture, 2024, 36(9): 89-101.
[7] Huaming LI. Opportunities and Challenges: The Use of ChatGPT in Enabling Library Knowledge Services [J]. Journal of library and information science in agriculture, 2024, 36(8): 96-105.
[8] JIANG Peng, REN Yan, ZHU Beiling. Exploration and Practice of Classification Indexing Combined with Large Language Models [J]. Journal of library and information science in agriculture, 2024, 36(5): 32-42.
[9] SHOU Jianqi. Towards Known Unknowns: GPT Large Language Models Empower Human-Centered Information Retrieval [J]. Journal of library and information science in agriculture, 2023, 35(5): 16-26.
[10] GUO Pengrui, WEN Tingxiao. Research of the Impact of LLMs on Information Retrieval Systems and Users' Information Retrieval Behavior [J]. Journal of library and information science in agriculture, 2023, 35(11): 13-22.
[11] ZHAO Ruixue, HUANG Yongwen, MA Weilu, DONG Wenjia, XIAN Guojian, SUN Tan. Insights and Reflections of the Impact of ChatGPT on Intelligent Knowledge Services in Libraries [J]. Journal of library and information science in agriculture, 2023, 35(1): 29-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!