中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (10): 37-52.doi: 10.13998/j.cnki.issn1002-1248.25-0317

Previous Articles    

Analysis of Online Public Opinion Situations Related to Agricultural Emergencies Based on Affective Computing and Guidance Strategy

HAO Yali1, SONG Yifei2, A Zhongping1, LIANG Ying1   

  1. 1.School of Public Management, Tianjin University of Commerce, Tianjin 300134
    2.School of Government Management, East China University of Political Science and Law, Shanghai 201620
  • Received:2025-06-12 Online:2025-10-05 Published:2025-12-16

Abstract:

[Purpose/Signficance] In the context of the increasingly widespread adoption of digital communication, agriculture-related emergencies often trigger complex and ever-changing public opinion online due to their high level of specialization and the significant cognitive barriers they pose to the general public. Emotional factors play a pivotal role in the evolution and governance of online public opinion. However, current research into how public opinion is guided in relation to agricultural emergencies still fails to systematically address emotional factors. [Method/Process] Therefore, the study constructed an analytical framework for emotional guidance in agricultural-related public opinion, integrating information subjects, information content, and the information environment. The framework was based on three complementary theories: information ecology theory, social amplification of risk theory, and negativity bias theory. It explored the correlations and combined effects of emotional factors with individual audiences, media, and the information environment. A total of 31 online public opinion cases involving agriculture, rural areas, and farmers were selected from the "Public Opinion Daily Reports" published by the People's Daily Online Public Opinion Data Center, covering the period from January 2021 to June 2025. The Weibo platform was chosen for this study, and data were collected by searching for case names and related topics on Weibo to capture raw data for conditional and outcome variables. Sentiment analysis was introduced to identify and quantify emotional characteristics in public opinion, and fuzzy-set qualitative comparative analysis (fsQCA) was employed to investigate how various factors collectively influence the guidance of online public opinion in public emergencies. The aim is to reveal the emotional guidance mechanisms and the logic behind effect formation in online public opinion regarding agricultural emergencies. [Results/Conclusions] The study found that public opinion in agriculture exhibits typical characteristics of equifinal multiple causation, whereby various combinations of factors can produce similar guiding effects. In contexts of high emotional polarisation, the pathways may rely on traffic restriction and emotional substitution regulation. In contexts of low emotional polarization, they may rely on the construction of emotional framing by authoritative media and opinion leaders. In different contexts, information clarity and netizens' emotional involvement can form a substitution relationship with the degree to which the platform intervenes in emotional regulation. This necessitates dynamic adjustments to guidance strategies based on specific situations. Based on this, the governance of agriculture-related public opinion online should shift towards a systematic emotional governance framework that leverages affective computing to expand the range of channels and strengthen the basis of public opinion. Efforts should also be devoted to strengthening dynamic response mechanisms based on real-time emotional monitoring. The aim should be to construct a sentiment guidance system for public opinion featuring dynamic allocation, multi-party collaboration, and precise reach.

Key words: affective computing, robot, agricultural-related emergencies, agricultural-related online public opinion, configurational paths

CLC Number: 

  • D63

Fig.1

A framework for providing guidance on public opinion under emotional dynamics in agriculture‑related emergencies"

Table 1

A compilation of cases on online public opinion in agriculture-related emergencies"

序号案例涉及领域
1官方通报一村民触电死亡农民
2官方通报网传“果农将苹果摆在路上逼停司机”农业、农民
3吉林产粮大县黑士地被征占建别墅农业
4多地出台鼓励放弃农村宅基地政策农村
5干部日夜严管村民烧秸秆农业
6货车进村被强制“捐款”千元农村
7农村聚餐不得使用四季豆引舆情争议农业
8网传公职人员和教师偷摘村民豆角农村
9农业专家脚踩“地毯”走玉米地农业
10返乡创业遭附近村民“组团偷瓜”农业、农民
11反思翁丁村火灾:应急演练不能“只演不练”农村、农民
12警方通报“农户土豆遭村民哄抢”农村、农民
13两地因焚烧秸秆被扣减财力农村、农业
14镇政府回应网红麦田遭游客踩踏农业
15南通一菜地中设立交通信号灯农村、农业
16燃气公司回应村民家灶台被贴封条农村、农民
17官方回应黑熊闯进村民家遭击杀农民
18村民反映新换井盖“一碰就碎”农村
19村民委员会主任被举报20万元变卖古石碑农村
20河南一地竞选村干部要有家族背景和经济基础农村、农民
21官方回应通往田间道路被打上铁桩农村、农业
22官方回应云南一村民被防雹弹砸伤农民
23内蒙古通报网传“干部下田拦春耕”农业、农村
24河南取款难村镇银行开展客户资金登记农村
25河北磁县回应“承包土地浇地难”农业
26农业农村部回应割青麦作饲料农业
27官方通报村支部书记等人顺手牵羊事件农村
28河北山海关古城回应禁柴封灶农村、农民
29山东单县“全村脑中风”处理结果公布农村
30湖南一镇党委书记被指系爱马仕皮带农村、农民
31唐山数百亩耕地被强制种树农业

Table 2

Operational indicator table for online public opinion in agriculture-related emergencies"

变量属性选取维度细分指标指标量化解释
条件变量涉农信息本体涉农舆情信息清晰度统计该事件“平均帖文长度”“专业术语密度”指标来度量信息清晰度
固有的情感极化程度评估涉农事件标题及内容信息中,含有情感冲击词汇(毒害、坑农、欺骗、绝收等)的出现频率
涉农信息主体权威媒体信息情感偏向性统计参与报道或评论该涉农突发事件的权威媒体账号数量,通过情感计算分析该事件的媒体发帖、评论、点赞与转发报道中标题和核心段落所使用的具有情感倾向性的词语数量信息,以此衡量该维度指标
意见领袖的情感动员力据粉丝数或认证类型筛选出事件讨论中具有“KOL”特征的用户(粉丝百万级别的知名人士、自媒体大V等)。计算其在涉农突发事件中原创、评论、转发的帖文中的情感倾向数值
网民情感卷入度通过“自我叙事”与“共情表达”得分衡量此指标。统计事件话题下独立用户的发帖数量中包含第一人称代词出现次数占帖文总词数的比例,以此衡量“自我叙事得分”;以及事件话题下独立用户的发帖文中包含“泪目了”“破防了”“狠狠共情”等表达的次数占帖文总次数的比例,以此代表“共情表达得分”。两者按比例加和计算
政府回应的情感效能设置“官方首次回应时滞”与“回应共情力”两个指标综合量化政府回应的情感效能。统计政府官方微博账号、调查报告等渠道首次发布权威信息的时间,计算与事件曝光时间的差值,以此衡量首次回应时滞;通过内容分析,评估官方通告中是否包含安抚、理解、共情类词汇信息,若有该类信息则赋值为1,反之为0。两者结合公式综合测度
涉农信息环境舆情扩散广度根据抓取的帖文附带的用户地域标签,统计涉及的省份数量,得到舆情扩散广度数值

平台情感调控

介入度

评估平台是否具有主动推送辟谣信息、在话题下置顶权威客观报道、对煽动性内容进行“降温”限流等干预行为。若舆情治理平台进行该类干预的次数远高于平均,赋值为1;反之,平台放任不管记为0
结果变量

涉农突发事件网络舆情情感

引导效果

构建引导效果评价指数来量化该维度,结合“情感倾向性”“舆情情感动能”“舆情持续时长”3个指标,通过计算公式综合判定

Table 3

Variable calibration"

变量模糊集校准
完全隶属交叉点完全不隶属
涉农突发事件网络舆情情感引导效果1 896.83068.76043.89
信息清晰度283.500140.00053.75
事件固有的情感极化程度446.5604.0200.33
权威媒体信息情感偏向性2 655.42087.3288.84
意见领袖情感动员力14 754.600458.0301.25
网民情感卷入度106.3050.7900.00
政府回应的情感效能93.2904.0800.00
舆情扩散广度31.00021.0007.00
平台情感调控介入程度///

Table 4

Results of necessary condition analysis"

条件变量突发事件网络舆情引导效果
一致性覆盖度
涉农舆情信息清晰度0.6930.599
~涉农舆情信息清晰度0.6880.537
事件固有的情感极化程度0.7580.793
~事件固有的情感极化程度0.7070.477
权威媒体信息情感偏向性0.7100.750
~权威媒体信息情感偏向性0.7430.498
意见领袖情感动员力0.7900.754
~意见领袖情感动员力0.6710.482
网民情感卷入度0.6840.751
~网民情感卷入度0.7050.461
政府回应的情感效能0.6620.668
~政府回应的情感效能0.8130.561
舆情扩散广度0.7180.574
~舆情扩散广度0.6440.542
平台情感调控介入程度0.6070.406
~平台情感调控介入程度0.3930.417

Table 5

Configuration analysis of online public opinion in agriculture-related emergencies"

条件A1A2B1B2C1C2DE1E2
涉农舆情信息清晰度(a1)
事件固有的情感极化程度(b1)
权威媒体信息情感偏向性(c1)
意见领袖情感动员力(d1)
网民情感卷入度(e1)
政府回应的情感效能(f1)
舆情扩散广度(g1)
平台情感调控介入程度(h1)
原覆盖率0.1090.1380.1370.1300.1080.1690.1240.1510.200
净覆盖率0.4970.0460.0350.0310.0460.0740.0270.0100.073
一致性0.9790.9890.9500.9430.9720.9910.9550.8180.941
代表型案例302920283127112324
解的一致性0.957
解的覆盖度0.656
[1] 陆风. 筑牢网络意识形态阵地 做好三农网络舆情工作[J]. 农村工作通讯, 2023(4): 51-52.
LU F. Build up the ideological position of the network and do a good job in the network public opinion work of agriculture, countryside and farmers[J]. Newsletter about work in rural areas, 2023(4): 51-52.
[2] 王志英, 杨淼, 王念新, 等. 信息安全突发事件情感领袖群际效应研究[J]. 管理科学, 2019, 32(1): 14-27.
WANG Z Y, YANG M, WANG N X, et al. Research on inter-group effect of emotional leaders in information security emergencies[J]. Journal of management science, 2019, 32(1): 14-27.
[3] 刘太刚, 向昉. “以规治情”与“以情治情”: 社区情感治理的再认识[J]. 中国行政管理, 2021(6): 11-18.
LIU T G, XIANG F "Governing emotion by regulation" and "governing emotion by emotion": Re-understanding of community emotional governance[J]. Chinese public administration, 2021(6): 11-18.
[4] [美]罗莎琳德·皮卡德. 情感计算[M]. 罗森林, 译. 北京: 北京理工大学出版社, 2005.
PICARD R W. Affective computing[M]. Beijing: Beijing Institute of Technology Press, 2005.
[5] 之江实验室. 情感计算白皮书(106页)[EB/OL]. [2022-12-24]. .
[6] 龚善要. 教育场景中情感计算的应用风险及其法律规制[J]. 复旦教育论坛, 2022, 20(6): 40-46.
GONG S Y. Affective computing in educational scenarios: Application risk and legal regulation[J]. Fudan education forum, 2022, 20(6): 40-46.
[7] 马皑, 宋业臻. 情感计算技术如何推动犯罪风险评估工具的发展 [J]. 心理科学, 2021, 44(1): 52-59.
MA A, SONG Y Z. How does emotional computing technology promote the development of crime risk assessment tools [J]. Journal of psychological science, 2021, 44(1): 52-59.
[8] 李棠洁. 公共治理应用情感计算技术的权利风险及其规制[J]. 人权, 2024(4): 49-68.
LI T J. The rights risks of using affective computing technology in public governance and their regulation[J]. Human rights, 2024(4): 49-68.
[9] 包康赟. 人脸情绪识别算法的风险与规制[J]. 北方法学, 2022, 16(1): 36-49.
BAO K Y. The risk and regulation of facial emotion recognition algorithm[J]. Northern legal science, 2022, 16(1): 36-49.
[10] 褚婧一. 情感计算的信息隐私法律风险及其应对[J]. 交大法学, 2023, 14(3): 63-77.
CHU J Y. Legal risks of affective computing to information privacy and its countermeasures[J]. SJTU law review, 2023, 14(3): 63-77.
[11] 阮凯. 情绪识别技术的问题、风险与规治[J]. 自然辩证法通讯, 2023, 45(2): 82-90.
RUAN K. The problems, risks and regulations of emotion recognition technology[J]. Journal of dialectics of nature, 2023, 45(2): 82-90.
[12] 孙晨霞, 施羽暇. 近年来大数据技术前沿与热点研究: 基于2015—2021年VOSviewer相关文献的高频术语可视化分析[J]. 中国科技术语, 2023, 25(1): 88-96.
SUN C X, SHI Y X. Frontier and hot topics in big data technology: Visual analysis of high-frequency terms based on relevant documents of VOSviewer from 2015 to 2021[J]. China terminology, 2023, 25(1): 88-96.
[13] 胡景谱, 陈凡. 基于技术情感的人机和谐交互建构[J]. 东北大学学报(社会科学版), 2024, 26(6): 36-43.
HU J P, CHEN F. Construction of harmonious man-machine interaction based on technical emotions[J]. Journal of Northeastern University(social science), 2024, 26(6): 36-43.
[14] 曾子明, 万品玉. 融合演化特征的公共安全事件微博情感分析[J]. 情报科学, 2018, 36(12): 3-8, 51.
ZENG Z M, WAN P Y. Sentiment analysis of public security events in micro-blog incorporating evolutionary features[J]. Information science, 2018, 36(12): 3-8, 51.
[15] 马腾, 殷跃, 赵树宽, 等. 多维数据融合的突发公共卫生事件网络舆情演化特征研究[J]. 情报理论与实践, 2022, 45(12): 170-177.
MA T, YIN Y, ZHAO S K, et al. Study on the evolution characteristics of public opinion of public health emergencies network based on multidimensional data fusion[J]. Information studies: Theory & application, 2022, 45(12): 170-177.
[16] 蒋知义, 马王荣, 邹凯, 等. 基于情感倾向性分析的网络舆情情感演化特征研究[J]. 现代情报, 2018, 38(4): 50-57.
JIANG Z Y, MA W R, ZOU K, et al. Research on emotional evolution characteristics of Internet public opinion based on emotional tendency analysis[J]. Modern information, 2018, 38(4): 50-57.
[17] 徐鹏, 尚维. 基于趋势情感映射的物价舆情词典及舆情指数构建研究[J]. 系统工程理论与实践, 2022, 42(12): 3381-3400.
XU P, SHANG W. The construction of inflation public opinion dictionary and index based on trend and sentiment mapping[J]. Systems engineering-theory & practice, 2022, 42(12): 3381-3400.
[18] 邓建高, 章倩, 齐佳音, 等. 突发食品安全事件网络情感计算及引导策略研究: 以“3·15”土坑酸菜事件为例[J]. 情报理论与实践, 2024, 47(12): 154-163, 132.
DENG J G, ZHANG Q, QI J Y, et al. Research on network emotion calculation and guidance strategy of sudden food safety incidents: Taking "3.15" Tukeng pickled sauerkraut incident as an example[J]. Information studies: Theory & application, 2024, 47(12): 154-163, 132.
[19] 文宏. 网络群体性事件中舆情导向与政府回应的逻辑互动: 基于“雪乡”事件大数据的情感分析[J]. 政治学研究, 2019(1): 77-90, 127-128.
WEN H. Logic interaction between public opinion orientation and government response in Internet Group crisis events: Emotional analysis based on big data of "Snow Village" event[J]. CASS journal of political science, 2019(1): 77-90, 127-128.
[20] 李佳莹, 吴理财. 迈向有温度的乡村网格治理: 基于情感治理的分析[J]. 华中农业大学学报(社会科学版), 2022(4): 150-159.
LI J Y, WU L C. Toward rural grid governance with temperature: Analysis based on emotional governance[J]. Journal of Huazhong agricultural university (social sciences edition), 2022(4): 150-159.
[21] 李静怡, 李志榕. 再造“乡情”: 农村社区治理网络的重构逻辑[J]. 社会建设, 2025, 12(4): 48-81.
LI J Y, LI Z R. Reconstructing "rural sentiment": The logic of reconfiguring governance networks in rural communities[J]. Social construction, 2025, 12(4): 48-81.
[22] 常健. 网络舆情的“自清洁”功能及其实现条件[J]. 天津社会科学, 2013(6): 44-47.
CHANG J. "Self-cleaning" function of Internet public opinion and its realization conditions[J]. Tianjin social sciences, 2013(6): 44-47.
[1] REN Fubing, LUO Ya. Evolution Mechanism of User's Network Cluster Behavior from the Perspective of Cognitive Bias [J]. Journal of library and information science in agriculture, 2025, 37(9): 18-31.
[2] LIU Yang, LYU Shuyue, LI Ruojun. Concept, Task, and Application of Social Robots in Information Behavior Research [J]. Journal of library and information science in agriculture, 2024, 36(3): 4-20.
[3] YANG Qian. Impact of Intelligent Consulting Robots on the Innovation of Reference Services in Libraries [J]. Journal of library and information science in agriculture, 2021, 33(5): 93-99.
[4] YAN Yimei, CHEN Hongbiao. A Mobile Platform-Based Course Intelligent Question and Answer Service Mode and Its Implementations [J]. Journal of library and information science in agriculture, 2021, 33(2): 74-82.
[5] HU Lin, LIU Tingting, LI Huan, CUI Yunpeng. Prospects for Machine Learning Research and its Application in Agriculture [J]. Journal of library and information science in agriculture, 2019, 31(10): 12-22.
[6] WU Weichao. Discussion on the Priority Application of Artificial Intelligence in China's Library Industry in the Next Ten Years [J]. Journal of library and information science in agriculture, 2018, 30(12): 74-77.
[7] ZHANG Ruanlan. Integration of Intelligent Robot and Library Service Innovation [J]. Journal of library and information science in agriculture, 2018, 30(10): 153-156.
[8] TANG Ying, LI Ying. The Feasible Study on Introducing Smart Robot to Library [J]. Journal of library and information science in agriculture, 2015, 27(10): 73-75.
[9] XU Rui, SUN Jing. Bibliometrics Analysis Based on SCI-E Data of Robot [J]. Journal of library and information science in agriculture, 2014, 26(6): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!