中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (1): 33-46.doi: 10.13998/j.cnki.issn1002-1248.24-0752

Previous Articles     Next Articles

Influencing Factors and Correlations of User Satisfaction with Mobile Health Applications

SHI Qin, XIE Jing(), WU Shang   

  1. School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023
  • Received:2024-11-23 Online:2025-01-05 Published:2025-04-27
  • Contact: XIE Jing E-mail:Xie_Hugh@njucm.edu.cn

Abstract:

[Purpose/Significance] Satisfaction is the patient's evaluation and emotional feedback on the entire mobile healthcare experience. Not only does it directly affect the patient's experience, but it also significantly influences user adoption and retention. Therefore, this study aims to explore the influencing factors, hierarchical relationships, and associated pathways of user satisfaction with mobile health applications, and provide scientific evidence and practical recommendations for the healthy development of mobile health applications, thereby promoting the construction of a healthy China and intelligent healthcare. By clarifying the key drivers of user satisfaction and their interactions, the study provides theoretical support for enhancing user experience, optimizing service quality, and increasing user retention. [Method/Process] This study first crawled, cleaned, and filtered negative user review data from mobile health applications, resulting in 539 valid data points after processing. Using the grounded theory, the study extracted factors influencing user satisfaction with mobile health applications by coding the review data. Subsequently, based on the interpretive structural model (ISM), the internal logic and associated pathways between these influencing factors were explored. Finally, the cross-impact matrix multiplication (MICMAC) method was used to examine the dependencies and driving forces among the influencing factors, and to identify the key factors affecting user satisfaction with mobile health applications. [Results/Conclusions] The study found that user satisfaction with mobile health applications is influenced by 23 factors across eight dimensions, including physician service quality, management service quality, system quality, information quality, transaction quality, perceived value, perceived risk, and perceived cost. Perceived cost and perceived risk are key drivers that directly affect user satisfaction. The middle-level factors transmit the effects of the bottom-level factors to the top level, acting as "mediators," and consist of factors from the dimensions of system quality, information quality, perceived value, transaction quality, and perceived risk. The bottom-level factors are the primary driving forces, including the quality of medical service, management service quality, system quality, and information quality. Based on the analysis results, this study proposes the following practical recommendations: strictly review the qualifications of doctors and establish a service quality evaluation mechanism; provide communication training for doctors and simplify medical terminology; add artificial intelligence and human services, and regularly train management service staff; design a simple interface and offer personalized customization; ensure information security and privacy, follow the principle of minimal data collection, and allow users to view and delete their personal information. Subsequent research, based on the expansion of the types of mobile health applications, will use a combination of qualitative and quantitative research methods to explore more deeply the relationships among the various factors that influence user satisfaction.

Key words: mobile health application, patient satisfaction, online reviews, interpretive structural modeling (ISM), information behavior

CLC Number: 

  • G252

Table 1

Open coding and basic categories"

基本范畴原始材料(初始概念)来源
Y1专业性婴儿嘴唇血管瘤,医生说是上火(诊断有误)春雨医生
Y2反馈及时性花49去看个病,但是回复速度慢到爆炸,5个小时快过去了,还不知道什么病(回复速度慢)丁香医生
Y3沟通性答非所问就算了,还老反问我,我要是什么都知道还要花钱来找医生干吗?(答非所问,过多反问)微脉
Y4管理服务效果平台客服形同虚设,钱交了之后并没有产生服务,平台叫我自己联系医生商量,根本解决不了问题(客服不解决问题)好大夫在线
Y5管理服务效率不仅医生回复慢,就连客服回复都慢(客服回复慢)春雨医生
Y6管理服务态度客服通过微信辱骂恐吓(客服辱骂)丁香医生
Y7媒体丰富性图片上传只有一次机会,最离谱的是没法语音,没法视频(无法语音、视频)丁香医生
Y8兼容性苹果手机根据就进不去(系统不兼容)微脉
Y9易用性对问诊的设置较其他同类APP来说麻烦些,让我自己描述症状,我没办法准确描述(问诊设置麻烦)好大夫在线
Y10稳定性问诊上传图片功能时灵时不灵。这种最基本的使用功能提高稳定性很难吗(功能不稳定)春雨医生
Y11可控性每天都推送垃圾信息给我,也没办法在软件里关闭,只好卸载(无法关闭推送)春雨医生
Y12时效性平台上大多是唯利是图的医生,论文和科普内容从不更新(内容更新不及时)春雨医生
Y13有用性资讯内容低劣,对我来说没有半点用,我下载不是为了看低俗广告的(咨询内容无用)丁香医生
Y14准确性随手点了两个病症,一个黄疸,里面什么都没有。还有一个呼吸道感染,适用药竟然只有一个布洛芬,不是误导人嘛(药物指导不准确)丁香医生
Y15退款属性医生开了处方,在平台买了药,不发货还不能退款(无法退款)好大夫在线
Y16物流属性发货慢,快递慢,不会再用(物流慢)春雨医生
Y17被关怀感医生刚开始会详细地给予解答,但后面我不买他推荐的药,态度一下子就冷淡下来了(态度冷淡)好大夫在线
Y18根治感特别差,误诊高,根本看不好病的,大家一定要去医院(治不好病)好大夫在线
Y19感知隐私风险问诊记录用户没有删除的权限,而且在试用期间也不告知会录音录像并存于后台(无权处置问诊记录,强行录音)好大夫在线
Y20感知财产风险搞什么银行卡钱包,微信支付不就可以了吗?认证还要上传证件,安全性有保障吗?(财产安全无保障)丁香医生
Y21感知存储风险之前有喜脉母婴,更新完没有了,我的怀孕记录的东西都没了(存储功能故障)微脉
Y22感知服务费用身体不适咨询一些问题,收费比医院挂号费都贵(费用贵)春雨医生
Y23感知转换成本拿着APP加号的预约挂号去医院,医院不承认,让我另外挂号。又浪费时间又浪费钱(费钱费时间)微脉

Table 2

Axical coding"

主范畴范畴含义
医生服务质量专业性医生问诊过程规范程度,诊断结果科学程度
反馈及时性医生问诊过程中响应患者的快慢程度
沟通性医生问诊过程中,交互顺利性及服务态度的好坏程度
管理服务质量管理服务效果移动健康APP平台管理服务过程中,处理事件的优劣程度
管理服务效率移动健康APP台管理服务过程中,处理事件的快慢程度
管理服务态度移动健康APP平台管理服务过程中,处理事件态度友好程度
系统质量媒体丰富性移动健康APP提供图文咨询、电话咨询、视频咨询等技术支撑程度
兼容性移动健康APP与移动通信设备不同系统之间的兼容程度
易用性移动健康APP界面完整性、系统可操作性程度
稳定性移动健康APP系统流畅、操作稳定程度
可控性移动健康APP中功能设置与选择的掌控程度
信息质量时效性移动健康APP所提供信息更新速度
有用性移动健康APP所提供信息对用户健康管理、疾病预防、医疗决策等方面的帮助程度
准确性移动健康APP内信息真实、可靠的程度
交易质量退款属性患者在移动健康APP中购置物品后因各种原因导致退货,整个退款过程的顺利程度
配送属性患者在移动健康APP中购置物品后,物品配送速度快慢程度
感知价值被关怀感患者感觉移动健康APP不仅疾病问题得到解决,情绪和情感也得到了关注
根治感患者感觉移动健康APP中医生是从根源上处理病情
感知风险感知隐私风险患者使用移动健康APP时对泄露自身隐私的担忧
感知财产风险患者使用移动健康APP时对财产安全的担忧
感知存储风险患者移动健康APP时对安全存储的担忧
感知成本感知服务费用患者使用移动健康APP时,对于服务费用与所提供的服务不相匹配程度
感知转换成本患者从移动健康APP转向线下看诊需要付出的时间、经济、认知等成本

Fig.1

Framework of factors influencing user satisfaction in mobile health apps"

Table 3

Adjacency matrix A of factors influencing user satisfaction in mobile health apps"

Y(i)Y(j)
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10Y11Y12Y13Y14Y15Y16Y17Y18Y19Y20Y21Y22Y23
Y100000000000101001100011
Y200100000000111001100011
Y301000000000111001100010
Y400000000000000110101010
Y500010000000000110101010
Y600010000000000111101010
Y700000000000000000000001
Y800000010010000000000101
Y900000011010000000000000
Y1000000010000000000010000
Y1100000010000000000000000
Y1200000000000001001000000
Y1300000000000101001000000
Y1400000000000000001000000
Y1500000000000000000001010
Y1600000000000000000000011
Y1700000000000000000100011
Y1800000000000000001000010
Y1900000000000000000000000
Y2000000000000000000000010
Y2100000000000000000010000
Y2200000000000000000000001
Y2300000000000000000000010

Table 4

Reachability matrix R of factors influencing user satisfaction in mobile health apps"

Y(i)Y(j)
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10Y11Y12Y13Y14Y15Y16Y17Y18Y19Y20Y21Y22Y23
Y100000000000101001100011
Y200100000000111001100011
Y301000000000111001100011
Y400000000000000111101011
Y500010000000000111101011
Y600010000000000111101011
Y700000000000000000000011
Y800000010010000000010111
Y900000011010000000010111
Y1000000010000000000010011
Y1100000010000000000000011
Y1200000000000001001100011
Y1300000000000101001100011
Y1400000000000000001100011
Y1500000000000000000001011
Y1600000000000000000000011
Y1700000000000000000100011
Y1800000000000000001000011
Y1900000000000000000000000
Y2000000000000000000000011
Y2100000000000000000010000
Y2200000000000000000000001
Y2300000000000000000000010

Table 5

Variable hierarchical iteration"

Y iR(Y i )A(Y i )C(i)L k
Y11,12,14,17,18,22,23115
Y22,3,12,13,14,17,18,22,232,32,36
Y32,3,12,13,14,17,18,22,232,32,36
Y44,15,16,17,18,20,22,234,5,644
Y54,5,15,16,17,18,20,22,23555
Y64,6,15,16,17,18,20,22,23665
Y77,22,237,8,9,10,1172
Y87,8,10,19,21,22,238,984
Y97,8,9,10,19,21,22,23995
Y107,10,19,22,238,,10103
Y117,11,22,2311113
Y1212,14,17,18,22,231,2,3,12,13124
Y1312,13,14,17,18,22,232,3,13135
Y1414,17,18,22,231,2,3,12,13,14143
Y1515,20,22,234,5,6,15153
Y1616,22,234,5,6,16162
Y1717,18,22,231,2,3,4,5,6,12,13,14,17,1817,182
Y1817,18,22,231,2,3,4,5,6,12,13,14,17,1817,182
Y19198,9,10,19,21191
Y2020,22,234,5,6,15,20202
Y2119,218,9,21212
Y2222,231,2,3,4,5,6,7,8,9,10,11,1222,231
Y2322,2313,14,15,16,17,18,20,22,2322,231

Fig.2

Explanatory structural model of factors influencing user satisfaction in mobile health apps"

Fig.3

MICMAC analysis quadrants of factors influencing user satisfaction in mobile health apps"

1 中国互联网络信息中心. 第53 次《中国互联网络发展状况统计报告》发布[EB/OL]. [2024⁃02⁃22]. .
2 YAN M, FILIERI R, RAGUSEO E, et al. Mobile apps for healthy living: Factors influencing continuance intention for health apps[J]. Technological forecasting and social change, 2021, 166: 120644.
3 SHEN X L, LI Y J, SUN Y Q. Wearable health information systems intermittent discontinuance[J]. Industrial management & data systems, 2018, 118(3): 506-523.
4 AKTER S, D'AMBRA J, RAY P, et al. Modelling the impact of mHealth service quality on satisfaction, continuance and quality of life[J]. Behaviour & information technology, 2013, 32(12): 1225-1241.
5 金燕, 李京珂, 耿瑞利. 隐私视角下健康类APP用户流失意愿研究[J]. 现代情报, 2021, 41(1): 67-77.
JIN Y, LI J, GENG R L. Research on the churn intention of health APP users from the perspective of privacy[J]. Journal of modern information, 2021, 41(1): 67-77.
6 吴大伟, 胡小飞, 赵宇翔, 等. 感知价值视角下数字健康APP用户持续采纳意愿的影响因素及路径研究: 基于fsQCA方法[J]. 图书情报工作, 2021, 65(18): 93-104.
WU D W, HU X F, ZHAO Y X, et al. Research on influencing factors and path of users' continuous adoption intention of digital health apps from the perspective of perceived value: Based on fsQCA[J]. Library and information service, 2021, 65(18): 93-104.
7 WANG Y W, COLLINS W B. Systematic evaluation of mobile fitness apps: Apps as the Tutor, Recorder, Game Companion, and Cheerleader[J]. Telematics and informatics, 2021, 59: 101552.
8 GRUNDY Q. A review of the quality and impact of mobile health apps[J]. Annual review of public health, 2022, 43: 117-134.
9 王萍, 陈玮, 龙秋易, 等. 基于评论和更新日志数据匹配的健康类APP与用户交互模式研究[J/OL]. 情报科学, 2024: 1-25. .
WANG P, CHEN W, LONG Q Y, et al. Research on interaction mode between health APP and users based on data matching of comments and update logs[J/OL]. Information science, 2024: 1-25. .
10 林伟振, 刘洪伟, 陈燕君, 等. 基于在线评论的顾客满意度研究——以健康监测穿戴产品为例[J]. 数据分析与知识发现, 2023, 7(5): 145-154.
LIN W Z, LIU H W, CHEN Y J, et al. Customer satisfaction modelling for healthcare wearable devices through online reviews[J]. Data analysis and knowledge discovery, 2023, 7(5): 145-154.
11 谢娟, 李文文, 沈鸿权, 等. 信息爆炸和信息不确定语境下的可信度判据研究: 以COVID-19疫情为例[J]. 情报学报, 2021, 40(7): 714-724.
XIE J, LI W W, SHEN H Q, et al. Study on the criteria of information credibility in the context of information explosion and uncertainty: The case of COVID-19[J]. Journal of the China society for scientific and technical information, 2021, 40(7): 714-724.
12 杨克虎, 李秀霞. 循证卫生决策研究方法与实践[M]. 北京: 科学出版社, 2023.
YANG K H, LI X X. Research methods and practice of evidence-based health decision-making[M]. Beijing: Science Press, 2023.
13 袁静, 郭玲玉. 在线健康社区用户非持续使用行为影响因素分析[J]. 现代情报, 2022, 42(2): 81-93.
YUAN J, GUO L Y. Influencing factors analysis of discontinuous use behaviors of users on online health communities[J]. Journal of modern information, 2022, 42(2): 81-93.
14 王辉, 王晓玉, 顾东晓, 等. 在线健康社区重大慢病患者负面评论倾向的关键影响因素分析[J]. 情报科学, 2024, 42 (6): 12-20, 28.
WANG H, WANG X Y, GU D X, et al. Analysis on the key influencing factors of negative comment tendency of patients with major chronic diseases in online health community[J]. Information Science, 2024, 42 (6): 12-20, 28.
15 陈雨, 杨滨, 邓嵘. 感知价值视角下移动医疗问诊系统设计评价与优化[J]. 图书馆论坛, 2024, 44(5): 105-114.
CHEN Y, YANG B, DENG R. Evaluation and optimization of mobile medical consultation system design from a perceived value perspective[J]. Library tribune, 2024, 44(5): 105-114.
16 杨克虎, 沙勇忠, 魏志鹏. 循证社会科学总论[M]. 北京: 科学出版社, 2024.
YANG K H, SHA Y Z, WEI Z P. Overview of evidence-based social science[M]. Beijing: Science Press, 2024.
17 翟运开, 张倩, 赵栋祥. 疫情防控常态化下患者双渠道就诊满意度影响因素研究[J]. 图书情报工作, 2022, 66(3): 118-129.
ZHAI Y K, ZHANG Q, ZHAO D X. Research on influencing factors of patient satisfaction with dual-channel medical treatment under the normalization of epidemic prevention[J]. Library and information service, 2022, 66(3): 118-129.
18 YANG H L, GUO X T, WU T S. Exploring the influence of the online physician service delivery process on patient satisfaction[J]. Decision support systems, 2015, 78: 113-121.
[1] Guowei GAO, Shanshan ZHANG, Jialan YU. A Review of Health Information Behaviors of Older People from the Perspective of Topic Differentiation [J]. Journal of library and information science in agriculture, 2024, 36(7): 34-49.
[2] Liqin YAO, Hai ZHANG. Model Construction and Empirical Research on the Influencing Factors of AIGC User Dropout Behavior [J]. Journal of library and information science in agriculture, 2024, 36(5): 79-92.
[3] Chunling GAO, Liyuan JIANG. Elderly People's Online Health Information Seeking Behavior Based on Evolutionary Dynamics [J]. Journal of library and information science in agriculture, 2024, 36(5): 65-78.
[4] LIU Yang, LYU Shuyue, LI Ruojun. Concept, Task, and Application of Social Robots in Information Behavior Research [J]. Journal of library and information science in agriculture, 2024, 36(3): 4-20.
[5] ZHOU Xin. Machine Functionalism and the Digital-Intelligence Divide: Evolutionary Pathways, Generative Logic and Regulatory Strategies [J]. Journal of library and information science in agriculture, 2024, 36(3): 59-71.
[6] SHI Yanqing, LI Lu, SHI Qin. Impact of User Heterogeneity on Knowledge Collaboration Effectiveness from a Network Structure Perspective [J]. Journal of library and information science in agriculture, 2024, 36(3): 72-82.
[7] WANG Yueying. Exploring the Causes of Low Health Information Literacy Among Rural Middle-Aged and Elderly Adults and its Improvement Strategies [J]. Journal of library and information science in agriculture, 2024, 36(2): 81-93.
[8] WANG Weizheng, QIAO Hong, LI Xiaojun, WANG Jingjing. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework [J]. Journal of library and information science in agriculture, 2024, 36(2): 36-50.
[9] Zheng WANG, Miao ZHUANG, Yudi ZHANG, Yaqi ZHANG. Factors Influencing Online Health Information Acquisition Behavior of Rural Elderly Groups in Western China: A Field Study from the Guanzhong Region of Shaanxi Province [J]. Journal of library and information science in agriculture, 2024, 36(10): 23-37.
[10] Yijia WAN, Liping GU. Behavioral Motivation and Influencing Factors of Graduate Students Using AIGC Tool: An Empirical Analysis Based on Questionnaire Survey [J]. Journal of library and information science in agriculture, 2024, 36(10): 4-22.
[11] XIE Yanjie. Review of Public Library Services to the Elderly in China [J]. Journal of library and information science in agriculture, 2023, 35(7): 18-26.
[12] LI Jing. Causes of Intergenerational Conflict Heath Information Behavior and Its Mechanism in Social Control in the Context of Public Health Emergencies [J]. Journal of library and information science in agriculture, 2023, 35(5): 74-88.
[13] XIAO Yun, XU Huanhuan, XIAO Yayuan, ZHAO Youlin, PANG Hangyuan. User Preference Mining in Digital Community Based on CLV Preference Mining Model [J]. Journal of library and information science in agriculture, 2023, 35(2): 45-60.
[14] JIANG Zhihui, LI Xuan, CAO Gaohui. Causes and Influence Paths of Digital Stress among Social Media Users [J]. Journal of library and information science in agriculture, 2023, 35(11): 64-76.
[15] GUO Pengrui, WEN Tingxiao. Research of the Impact of LLMs on Information Retrieval Systems and Users' Information Retrieval Behavior [J]. Journal of library and information science in agriculture, 2023, 35(11): 13-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!