中文    English

Journal of Library and Information Science in Agriculture ›› 2022, Vol. 34 ›› Issue (1): 74-85.doi: 10.13998/j.cnki.issn1002-1248.21-0413

Previous Articles     Next Articles

Analysis of Public Emergency Information Search Behavior and Research on Service Strategy Under Financial Emergencies

ZHAO Xueqin, YANG Yifan   

  1. School of History and Culture, Hubei University, Wuhan 430062
  • Received:2021-05-26 Online:2022-01-05 Published:2022-01-27

Abstract: [Purpose/Significance] Financial emergencies can easily lead to systemic financial crises and affect national economic and social development. In this context, carrying out emergency information search activities is conducive to the public's use of financial emergency information and strategies to stop losses in a timely manner, and it is also indispensable for financial risk emergency management and emergency information services. [Methods/Process] This paper uses literature research, interviews, and questionnaire surveys to derive public financial emergency information search behavior patterns, and combines analysis methods such as mean calculation and two-step clustering to construct a public financial emergency information search behavior model. [Results/Conclusions] The study found and constructed three types of group models: passive difficulty type, diving browsing type and active barrier-free type. Passive and difficult groups have a low risk of disaster, and their emergency information search behavior is more passive; the diving browsing group has a moderate risk of disaster and will actively search for emergency information; the active barrier-free group has a higher risk of disaster, and its perception of search obstacles is weak, and its emergency information search behavior is positive. It also provides relevant suggestions for optimizing financial risk emergency information services based on the three types of models.

Key words: financial emergencies, emergency information search behavior, two-step cluster, emergency management, emergency information search activities

CLC Number: 

  • G203
[1] 李允哲. 银行业不良资产分析与对策研究——以江苏淮安银行业发展现状为例[J]. 当代经济, 2017(26): 50-51.
LI Y Z. Analysis and countermeasures of non-performing assets in banking industry - Taking the development status of Jiangsu Huaian banking industry as an example[J]. Contemporary economy, 2017(26): 50-51.
[2] 刘晓静. 区域金融突发事件应急能力建设与评价[J]. 防灾科技学院学报, 2019, 21(1): 57-64.
LIU X J. The construction and evaluation of emergency response capacity for regional financial emergencies[J]. Journal of the institute of disaster prevention science and technology, 2019, 21(1): 57-64.
[3] 郭六生. 构建金融突发事件指挥调度系统的思考[J]. 金融发展评论, 2020(1): 29-39.
GUO L S. Considerations on building a command and dispatching system for financial emergencies[J]. Financial development review, 2020(1): 29-39.
[4] 张守川. 完善银行业应急管理机制[J]. 中国金融, 2020(8): 27-29.
ZHANG S C. Improving the emergency management mechanism of the banking industry[J]. China finance, 2020(8): 27-29.
[5] 吴琦, 董希淼. 当前我国金融领域的"灰犀牛"及防范[J]. 金融博览, 2017(9): 32-33.
WU Q, DONG X M. The current "gray rhino" in my country's financial sector and its prevention[J]. Finance expo, 2017(9): 32-33.
[6] 李娟. 金融突发事件应急处置法律问题研究[D]. 武汉: 武汉大学, 2004.
LI J. Research on legal issues of emergency response to financial emergencies[D]. Wuhan: Wuhan university, 2004.
[7] 陈希凤, 李亚奇. 重大突发事件下中央银行政策行为及启示[J]. 区域金融研究, 2020(7): 29-33.
CHEN X F, LI Y Q. Central bank policy behavior and enlightenment under major emergencies[J]. Regional financial research, 2020(7): 29-33.
[8] 涂小梅. 应急情境下公众信息搜寻行为研究[D]. 保定: 河北大学, 2018.
TU X M. Research on public information search behavior in emergency situation[D]. Baoding: Hebei university, 2018.
[9] 叶光辉, 李纲, 夏立新. 面向应急决策的虚拟参考咨询要素分析[J]. 图书情报工作, 2016, 60(20): 5-12.
YE G H, LI G, XIA L X. Analysis of virtual reference consulting elements for emergency decision-making[J]. Library and information service, 2016, 60(20): 5-12.
[10] 柴会明, 陈兰杰. 国内外突发事件中公众应急信息行为研究述评[J]. 图书馆学研究, 2020(1): 7-15.
CHAI H M, CHEN L J. A review of the research on public emergency information behavior in emergencies at home and abroad[J]. Research in library science, 2020(1): 7-15.
[11] CAHYANTO I, PENNINGTON-GRAY L, THAPA B, et al. Predicting information seeking regarding hurricane evacuation in the destination[J]. Tourism management, 2016, 52(2): 264-275.
[12] 宋之杰, 王娜, 李爱影, 等. 情绪对突发事件信息加工过程的影响——基于眼动追踪技术[J]. 情报杂志, 2017, 36(8): 76-80, 149.
SONG Z J, WANG N, LI A Y, et al. On the influence of emotion on information processing of emergencies: Eye-movement tracing technology as an example[J]. Journal of information, 2017, 36(8): 76-80, 149.
[13] 叶光辉, 曾杰妍, 胡婧岚. 用户应急信息搜寻行为研究评述[J]. 图书情报知识, 2019(4): 71-81.
YE G H, ZENG J Y, HU J L. A review of research on user emergency information searching behavior[J]. Books, information, and knowledge, 2019(4): 71-81.
[14] ALLEN K C, SUBERVI F. Prevention of post-disaster sequelae through efficient communication planning: Analysis of information-seeking behaviours in Montana and Alabama[J]. Public health, 2016: 348-351.
[15] 秦雅琴, 梁璐, 许庚, 等. 数据挖掘下车险续保概率及画像建模研究[J/OL]. 重庆理工大学学报(社会科学): 1-12[2021-02-03]. http://kns.cnki.net/kcms/detail/50.1205.t.20210111.1342.002.html.
Qin Y Q, Liang L, Xu G, et al. Research on auto insurance renewal probability and portrait modeling based on data mining[J/OL]. Journal of Chongqing university of technology (social sciences): 1-12[2021-02-03]. http://kns.cnki.net/kcms/detail/50.1205.t.20210111.1342.002.html.
[16] 孙李红, 杨稳稳. 基于二阶聚类分析的客户管理分类研究[J]. 哈尔滨商业大学学报(自然科学版), 2019, 35(5): 630-633.
SUN L H, YANG W W. Research on customer classification management based on two step clustering analysis[J]. Journal of Harbin university of commerce (natural science edition), 2019, 35(5): 630-633.
[17] 钟异莹, 陈坚, 邵毅明. 基于二阶聚类的城市交通弱势群体细分算法[J]. 计算机应用研究, 2020, 37(s1): 132-134.
ZHONG Y Y, CHEN J, SHAO Y M. Subdivision algorithm of urban traffic vulnerable groups based on second-order clustering[J].Application research of computers, 2020, 37(s1): 132-134.
[18] 刘静, 安璐. 突发公共卫生事件中社交媒体用户应急信息搜寻行为画像研究[J]. 情报理论与实践, 2020, 43(11): 8-15.
LIU J, AN L. The profiling of users' emergency information seeking behavior on social media in the context of public health emergencies[J]. Intelligence theory and practice, 2020, 43(11): 8-15.
[19] 张懿木, 黄永燊, 李健, 等. 基于二阶聚类算法的常规公交乘客出行特征分析——以厦门为例[J]. 综合运输, 2020, 42(3): 120-126.
ZHANG Y M, HUANG Y S, LI J, et al. Conventional bus passenger travel characteristics analysis based on the second-order clustering algorithm - Taking Xiamen as an example[J]. Comprehensive transportation, 2020, 42(3): 120-126.
[20] 蒋明敏, 王艺苑. 信息觅食视角下云共享信息的优化探索和特性分析[J]. 情报科学, 2020, 38(5): 93-97, 140.
JIANG M M, WANG Y Y. The optimization exploration and characteristic analysis of cloud shared information from the perspective of information foraging[J]. Information science, 2020, 38(5): 93-97, 140.
[21] 吴川徽, 黄仕靖, 袁勤俭. 用户感知风险与网络信息搜寻行为关系的元分析[J]. 情报理论与实践, 2020, 43(6): 115-122.
WU C H, HUANG S J, YUAN Q J. Meta-Analysis of the relationship between users perceived risk and online information seeking behavior[J]. Information theory and practice, 2020, 43(6): 115-122.
[22] KUHLTHAU C C. Inside the search process: Information seeking from the user's perspective[J]. Journal of the American society for information science, 1991, 42(5): 361-371.
[23] TASHAKKORI A, TEDDLIE C. Mixed methodology: Combining qualitative and quantitative approaches[M]. Thous and oaks: Sage, 1998.
[24] 安璐, 欧孟花. 突发公共卫生事件利益相关者的社会网络情感图谱研究[J]. 图书情报工作, 2017, 61(20): 120-130.
AN L, OU M H. Study on social network emotional atlas of stakeholders in public health emergency[J]. Library and information service, 2017, 61(20): 120-130.
[25] 中国城市中心.中国城市金融力Top30排行榜[EB/OL].[2021-03-21]. https://www.sohu.com/a/366161387_365037.
China's city center. China's city financial power top 30 ranking[EB/OL]. [2021-03-21]. https://www.sohu.com/a/366161387_365037.
[1] ZHAO Youlin, CAO Hongnan. Government Microblog Information Exchange Efficiency and Its Influencing Factors for Emergency Management [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 72-85.
[2] SONG Kai, RAN Congjing. Digital Technologies Aid Intelligent Epidemic Prevention and Control: Community-based Rapid Detection and Tracking Platform of COVID-19 [J]. Journal of Library and Information Science in Agriculture, 2022, 34(5): 92-101.
[3] MU Di, CHEN An. Multi-dimensional intelligence model for public health emergencies and its application [J]. Journal of Library and Information Science in Agriculture, 2020, 32(4): 15-22.
[4] FAN Chao, CHEN An. Literature Review on Emergency Management Based on Feature Analysis [J]. Agricultural Library and Information, 2018, 30(12): 5-17.
[5] ZHANG Chenyang, CHEN An. Trend Analysis on the Emergency and Emergency Management Research [J]. Agricultural Library and Information, 2018, 30(12): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!