中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (5): 27-39.doi: 10.13998/j.cnki.issn1002-1248.25-0385

Previous Articles     Next Articles

Research of Interdisciplinary Comparison and Collaborative Paradigm on the Concept of Agent in Library Science

CHEN Jiayong1, GONG Jiaoteng1,2(), WANG Yuyi3   

  1. 1.School of Public Administration, Xiangtan University, Xiangtan 411105
    2.Library, Xiangtan University, Xiangtan 411105
    3.Tianyuan Intelligent Science Research Institute, Zhuzhou 412001
  • Received:2025-04-15 Online:2025-05-05 Published:2025-08-10
  • Contact: GONG Jiaoteng E-mail:jtgong2005@163.com

Abstract:

[Purpose/Significance] Through interdisciplinary comparison, the core connotation, common core and field differentiation of the Agent concept are revealed, the Agent-related concepts and theories contained in library science are revealed, and the innovative value of AI Agent driven by large language models to the core services of libraries is analyzed to promote the transformation of knowledge services to intelligent and collaborative paradigms. Understanding the interdisciplinary nature of Agents will help library science, information science and other related disciplines to better design and apply AI technologies and achieve the core mission of connecting humans and knowledge in a more efficient, accurate and humane way. It will also enable library science to more accurately integrate the essence of the six major disciplines and transform the traditional three-subject relationship of readers, librarians and systems into a new collaborative paradigm. [Method/Process] Using interdisciplinary literature analysis, the definition, theoretical evolution and application characteristics of Agent in six major disciplines of philosophy, economics, law, biology, sociology and computer science are sorted out, the concepts and theories related to Agent contained in library science are explored, and the commonalities and differentiation of Agent in the five-dimensional characteristics of autonomy, perception, purpose, adaptability and interactivity of each discipline are compared. The theoretical essence of the six major disciplines is mapped to the three-dimensional subject in the practical field of library science, and the Agent role coordination mechanism of readers, librarians and systems is analyzed. Readers are entities with intentions and autonomous consciousness, and they will actively initiate information search behaviors based on information needs such as learning knowledge and solving problems and will also adjust their strategies according to environmental changes such as technical tools and social culture, reflecting agent-like adaptability. Librarians serve as service intermediaries and information gatekeepers, connecting readers with resources through technical services such as classification and cataloging, and helping users clarify their information needs and improve their information literacy through reader services such as reference consultation. The library's information systems will also simulate human agent capabilities through algorithms or technologies. Automated search engines or crawlers will collect data according to preset rules, and personalized information recommendations will be made based on user behavior, driving the library's management and services towards automation and intelligence. [Results/Conclusions] The commonality of interdisciplinary agents revolves around the realization of goals by autonomous actors in the environment. The five-dimensional characteristics constitute an interdisciplinary consensus, and the differences are due to the core issues of the disciplines. The essence of a library is a multi-agent system. The reader agent integrates philosophical intentionality and economic game strategy, reflecting demand-driven adaptive retrieval. The librarian agent inherits the legal agency rights and responsibilities and the sociological structural initiative, becoming a professional intermediary between resources and users. The system agent draws on the biological evolutionary adaptation and computer perception closed loop, and advances to an intelligent base for autonomous optimization. AI Agent is a technical enhancement of the inherent agent characteristics of library science. It realizes automation, personalization and intelligent service upgrades through large language models, realizes intention understanding, tool calling, and multi-agent collaboration, and drives the three-element subject from passive response to active collaboration. The three-element agent framework for library science is created, which clarifies the collaborative agent roles of readers, librarians, and systems, and reveals the deep logic of AI Agent driven by large language models and library science. An interdisciplinary comparative study of the Agent concepts reveals that its essence is a practical vehicle for achieving autonomous decision-making in a specific environment. Philosophy gives it depth of consciousness, economics models strategic games, law defines the boundaries of rights and responsibilities, biology reveals evolutionary logic, sociology anchors structural interactions, and computer science ultimately achieves a closed-loop technology. Library science constructs a ternary collaborative intelligent ecosystem that transforms abstract autonomy into a practical paradigm of knowledge connection through the dynamic collaboration of readers, librarians, and systems.

Key words: library science, artificial intelligence, AI Agent, interdisciplinary research, human-AI collaboration

CLC Number: 

  • G250.7

Table 1

The translation, definition, characteristic emphasis, classic literature, related theories, and application scenarios of the "Agent" concepts in different disciplines"

领域译名定义特性侧重经典文献相关理论应用场景
哲学行为主体拥有欲望、信念、意图及行动能力的实体

自主性

目的性

(强调意图驱动理性决策)

BRATMAN(1987);

DENNETT(2004);

SEARLE(1986)

BDI模型

意向性理论

演化适应性理论

人类行为建模

人工智能伦理

经济学经济主体参与经济活动的决策实体,在约束条件下追求效用或利润最大化

目的性

适应性

(侧重目标导向与策略调整)

VON NEUMANN & MORGENSTERN(1944);

HARSANYI(1967);

KAHNEMAN & TVERSKY(1979)

完全理性模型

贝叶斯博弈论

展望理论

市场竞争分析

拍卖机制设计

行为金融与公共政策

法律代理人被授权代表委托人行使权利并承担法律后果的实体

交互性

自主性

(聚焦授权关系下的协作行为)

《中华人民共和国民法典》第161~175条;

Restatement (Third) of Agency(2006);

POSNER(1973)

委托代理理论

法律激励系统

合同签订

公司治理

诉讼代理

专利代理

房产中介

品牌经销

生物学适应主体具有生存策略的生物个体或群体,通过自然选择优化基因传播

适应性

感知性

(关注环境反馈与无意识演化)

DAWKINS(1976);

SMITH(1982);

LEVIN(1998)

自私基因理论

演化稳定策略

多层次互动涌现

基因编辑工具

动物行为解释

群体智能

社会学行动者具有意图、反思能力并能主动塑造社会结构的个体或集体实体

交互性

自主性

(突出社会网络中的实践能力)

WEBER(1936);

PARSONS(1968);

LATOUR(2005)

社会行动理论

结构能动性理论

非人类行动者网络

社会变迁研究

制度设计

计算机科学智能体通过传感器感知环境、执行器影响环境,具有自主决策能力的软件实体

自主性

感知性

适应性

(全栈覆盖感知-行动闭环)

TURING(1950)

RUSSELL & NORVIG(1995);

YAO(2023)

BDI计算模型

感知规划决策执行循环

多智能体系统

自动化系统

聊天机器人

自动驾驶系统

虚拟社会模拟

软件开发协作

图书馆学协同主体实现知识连接的读者、馆员、系统三元协同主体,通过人机协作优化信息获取效率

目的性

交互性

适应性

(强调知识传递目标下的动态协作)

TAYLOR(1967);ELLIS(1989);DERVIN(1992)

信息搜寻模型

意义建构理论

信息需求层次理论

读者主动搜寻

馆员参考咨询

信息检索系统

Table 2

Comparison of "Agent" concepts between library science and other disciplines"

领域典型实体定义自主性感知性目的性适应性交互性
哲学人类拥有欲望、信念、意图的意识实体理性主体意志与反思能力意识驱动的环境理解欲望信念意图目标动态调整计划多主体协作承诺
经济学

消费者

企业

政府

追求效用或利润最大化的决策实体约束条件下的效用最大化决策市场信号与信息不对称识别利润效用最大化策略随博弈环境演化寡头竞争/拍卖交互
法律

法律代理人

经纪人

被授权代表委托人的责任实体委托人授权下的代理行为法律条款与权责关系识别实现委托目标和契约义务监管约束、合规性调整委托人-代理人-第三方关系链
生物学

基因

生物个体

生物种群

基因驱动的无意识适应主体基因驱动的无意识生存决策环境压力与资源竞争感知生存与繁殖成功率最大化演化稳定策略种群竞争和共生
社会学

个人

社会组织

结构约束下的能动实践者结构制约中的能动性社会规范与文化语境识别意义赋予与资源争夺策略性适应社会变迁社会网络互动
计算机科学

软件

智能体

机器人

感知环境并执行行动的软件代理算法驱动的任务自主执行传感器数据与环境状态获取预设任务优化机器学习反馈调优多Agent系统协作
图书馆学

读者

馆员

系统

信息寻求者

专业中介者

技术执行者

需求主导检索

专业判断决策

规则自动化执行

用户行为数据

资源元数据

系统状态监控

解决信息需求

资源精准匹配

服务效率优化

响应用户行为变化

适配技术生态演进

读者馆员参考咨询

读者系统信息检索

馆员系统信息组织

Table 3

The mapping of core theoretical contributions of "Agent" concepts in different disciplines to library science"

学科领域核心理论贡献图书馆学映射
哲学理性决策与意向性本质用户意图驱动的信息搜寻逻辑
经济学有限理性下的策略博弈资源分配中的效用最大化机制
法律权责明晰的代理关系馆员服务的授权与责任边界
生物学无意识演化的群体适应性信息系统自我优化的反馈循环
社会学结构约束中的能动实践用户、馆员、系统的社会网络协同
计算机科学感知决策行动的技术闭环AI Agent的全栈智能化支撑
[1] MCCANN H J, BRATMAN M E. Intention, plans, and practical reason[J]. Noûs, 1991, 25(2): 230.
[2] 刘炜. 大模型与智能体[J]. 图书情报知识, 2025, 42(2): 1.
LIU W. Large model and agent[J]. Documentation, information & knowledge, 2025, 42(2): 1.
[3] SEARLE J R. Minds, brains and science[M]. Cambridge, United States: Harvard University Press, 1986.
[4] DENNETT D C. Freedom evolves[M]. London: Penguin, 2004.
[5] SEARLE J R. Intentionality[M]. Cambridge, UK: Cambridge University Press, 1983.
[6] VON NEUMANN J, MORGENSTERN O. Theory of games and economic behavior[M]. Princeton: Princeton University Press, 1944.
[7] HARSANYI J C. Games with incomplete information played by "Bayesian" players, I–III: Part I. The basic model[J]. Management science, 2004, 50(ement): 1804-1817.
[8] KAHNEMAN D, TVERSKY A. Prospect theory: An analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263.
[9] 中华人民共和国民法典[EB/OL]. [2025-06-20]. .
[10] American Law Institute. Restatement (Third) of Agency[M]. Philadelphia: American Law Institute, 2006.
[11] POSNER R. Economic analysis of law[M]. Boston: Little Brown and Company, 1973.
[12] DAWKINS R. The selfish gene[M]. Oxford: Oxford University Press, 1976.
[13] WILLIAMS G C. Adaptation and natural selection: A critique of some current evolutionary thought[M]. Princeton: Princeton University Press, 2018.
[14] SMITH J M. Evolution and the theory of games[M]//Did Darwin Get It Right? Boston, MA: Springer US, 1988: 202-215.
[15] LEVIN S A. Ecosystems and the biosphere as complex adaptive systems[J]. Ecosystems, 1998, 1(5): 431-436.
[16] WEBER M. Social action[M]. Thousand Oaks: Sage Publication, 1936.
[17] WIRTH L, PARSONS T. The structure of social action: A study in social theory with special reference to a group of recent European writers[J]. American sociological review, 1939, 4(3): 399.
[18] LATOUR B. Reassembling the social: An introduction to actor-network-theory[M]. Oxford: Oxford University Press, 2005.
[19] TURING A M. Computing machinery and intelligence[M]//Parsing the Turing Test. Dordrecht: Springer Netherlands, 2007: 23-65.
[20] BROOKS R. A robust layered control system for a mobile robot[J]. IEEE journal on robotics and automation, 1986, 2(1): 14-23.
[21] BROOKS R A. Intelligence without representation[J]. Artificial intelligence, 1991, 47(1/2/3): 139-159.
[22] COHEN P R, LEVESQUE H J. Intention is choice with commitment[J]. Artificial intelligence, 1990, 42(2/3): 213-261.
[23] RUSSELL S J, NORVIG P. Artificial intelligence: A modern approach[M]. London: Pearson, 1995.
[24] WOOLDRIDGE M, JENNINGS N R. Intelligent agents: Theory and practice[J]. The knowledge engineering review, 1995, 10(2): 115-152.
[25] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems. New Orleans: NeurIPS, 2022: 24824-24837.
[26] YAO S, ZHAO J, YU D, et al. React: Synergizing reasoning and acting in language models[C]//International Conference on Learning Representations (ICLR). Kigali: OpenReview, 2023.
[27] PARK J S, O'BRIEN J, CAI C J, et al. Generative agents: Interactive simulacra of human behavior[C]//Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology. San Francisco CA USA: ACM, 2023: 1-22.
[28] QIAN C, LIU W, LIU H, et al. Chatdev: Communicative agents for software development[J/OL]. arXiv preprint arXiv:, 2023.
[29] XI Z H, CHEN W X, GUO X, et al. The rise and potential of large language model based agents: A survey[J]. Science China information sciences, 2025, 68(2): 121101.
[30] WIESINGER J, MARLOW P, VUSKOVIC V. Agents[EB/OL]. [2024-09-02]. .
[31] MINSKY M. Society of mind[M]. New York: Simon and Schuster, 1986.
[32] ELLIS D. A behavioural approach to information retrieval system design[J]. Journal of documentation, 1989, 45(3): 171-212.
[33] DERVIN B. From the mind's eye of the user: The sense-making qualitative-quantitative methodology[J]. Qualitative research in information management, 1992, 9(1): 61-84.
[34] TAYLOR, ROBERT S. Question-negotiation an information-seeking in libraries[M]. Bethlehem, PA: Lehigh University Center for Information Science, 1967.
[35] PIAGET J. The role of action in the development of thinking. In Knowledge and Development: Volume 1 Advances in Research and Theory. Boston, MA: Springer US. 1977, 17-42.
[1] GOU Ruike, LUO Wei. Influencing Factors of Continuous Use Intention of "Generation Z" Users of an AIGC Platform [J]. Journal of library and information science in agriculture, 2025, 37(3): 66-80.
[2] QIAO Jinhua, MA Xueyun. Risks and Regulations for Application of the LLaMA Model in University Future Learning Centers [J]. Journal of library and information science in agriculture, 2025, 37(2): 37-48.
[3] SUN Lijuan. Exploring the Transition of Public Librarians to "Prompt Librarians" from the Perspective of New Quality Productive Forces [J]. Journal of library and information science in agriculture, 2025, 37(1): 17-32.
[4] LUO Guofeng, YI Tong, YAN Zhouzhou. Critical Information Literacy Education in University Libraries from the Perspective of AIGC Application [J]. Journal of library and information science in agriculture, 2025, 37(1): 47-58.
[5] Hecan ZHANG, Chengqi YI, Peng GUO, Qianqian HUANG, Xiaokun JIN. Copyright Data Dilemma of Building High-Quality Data System for AI: Present Situation, Coping Strategies, and Implementation Path [J]. Journal of library and information science in agriculture, 2024, 36(9): 32-43.
[6] Xuemei LUO, Yuzhe LIN. Graduate Student Digital Literacy Promotion Pathway Driven by AIGC [J]. Journal of library and information science in agriculture, 2024, 36(9): 70-77.
[7] Shuyi WANG, Wen ZENG, Weishi ZHANG, Junjie LI. Addressing the Knowledge Worker AI Literacy Gap with AI Technology [J]. Journal of library and information science in agriculture, 2024, 36(8): 20-33.
[8] Huaming LI. Opportunities and Challenges: The Use of ChatGPT in Enabling Library Knowledge Services [J]. Journal of library and information science in agriculture, 2024, 36(8): 96-105.
[9] Baiyang LI, Rong SUN. Construction of an AI Literacy General Education Curriculum Based on "Knowledge-Skills" Navigation [J]. Journal of library and information science in agriculture, 2024, 36(8): 34-42.
[10] Fangrui BAI, Shaobo LIANG, Dan WU, Yuheng REN, Fan YANG. Human-Intelligent Information System Collaboration in Digital Twin Environment: Value Proposition, Key Technologies, and Practical Approaches [J]. Journal of library and information science in agriculture, 2024, 36(7): 4-18.
[11] Anqi HU, Shunquan JI. Driving Path of High-quality Development of China's Artificial Intelligence Technology Industry from the Perspective of Policy Instruments [J]. Journal of library and information science in agriculture, 2024, 36(7): 50-62.
[12] Jia LIU. Innovation and Risk Avoidance of Smart Library Services Based on Generative Artificial Intelligence [J]. Journal of library and information science in agriculture, 2024, 36(7): 63-75.
[13] Mo LI, Bin YANG. From Generative Artificial Intelligence to Artificial General Intelligence: Enabling Innovation Models in Library Knowledge Services [J]. Journal of library and information science in agriculture, 2024, 36(6): 50-61.
[14] Xiaolin ZHANG. Beyond Resources, Beyond Technologies, Beyond One's Institution: Developing New Productive Forces for Knowledge Services through Reform and Innovation of Traditional Knowledge Service Mechanisms [J]. Journal of library and information science in agriculture, 2024, 36(6): 4-15.
[15] PENG Lihui, ZHANG Qiong, LI Tianyi. Risk of AI Algorithmic Discrimination Embedded in Government Data Governance and Its Prevention and Control [J]. Journal of library and information science in agriculture, 2024, 36(5): 23-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!