中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (4): 51-65.doi: 10.13998/j.cnki.issn1002-1248.25-0195

Previous Articles    

User Experience of Public Library Intelligent Service from the Perspective of Actor Network Theory

XIAO Keyi1, LI Yunfan2, CHEN Yingying2, PENG Xi2   

  1. 1. Xiangtan University Library, Xiangtan 411105
    2. School of Public Administration, Xiangtan University, Xiangtan 411105
  • Received:2025-03-11 Online:2025-04-05 Published:2025-06-25

Abstract:

[Purpose/Significance] With the rapid advancement of the information society and the ongoing construction of smart cities, public libraries are facing increasing pressure to transition into a smart service model. Smart services leverage cutting-edge technologies to enhance user experiences and improve the efficiency of library services. Public libraries in China, however, are encountering challenges such as mismatched service offerings, unsatisfactory user experiences, and inadequate technological implementation as they move toward a smart service model. It is crucial to identify how to optimize this transition in a manner that prioritizes user needs, ensuring that smart library services meet the demands of a diverse user base. This research aims to explore the dynamic relationships among users, technology, content, and the service environment in public library smart services, thereby promoting innovation and addressing diverse user requirements. [Method/Process] The study develops a model to analyze the influence of various factors on the user experience of smart services in public libraries. Adopting Actor-Network Theory (ANT) constructs an integrated framework for understanding the interactions between various actors in the smart service ecosystem. By combining both online and offline surveys, the research captures library users' perceptions of their smart service experiences and identifies the critical factors that influence user experience and provides valuable data support and strategic recommendations for optimizing smart library services.Principal component analysis is used to identify the key factors affecting user experiences. [Results/Conclusions] The findings show that the core factors influencing user experience in smart services include: "advanced technology support," "network compatibility and flexibility," and "convenient communication channels" within the "library technology actors" dimension; "usability, operability, clarity, and comfort of portal browsing" within the "interaction between human-technology actors" dimension; "effort expectancy, information literacy, and time-energy consumption" within the "user (human actor)" dimension; "professionalism and competence of library staff" within the "librarian (human actor)" dimension; and "social influence and facilitating conditions" within the "interaction between human actors" dimension. These factors have a positive impact on the user experience, with particular attention required for the factors related to the "technology actors" dimension. Libraries need to focus on improving three factors in this area while maintaining and further optimizing the other factors. "Human-technology interaction" activities are crucial in improving the usability and user-friendliness of smart services, especially in more complex technological settings. Social influence and enabling conditions play an important role in enhancing user trust and their overall experience. Based on the empirical findings, the study proposes optimization strategies for public library smart services from three dimensions: the technical actors of the smart service system, the "human-technology actors" interactions, and the "translation" activities among human actors. These strategies include enhancing multi-dimensional collaboration among technical actors in the smart service system, improving the sensory experience of users with the smart service terminals in libraries by increasing their ease of use, empowering digital literacy, and optimizing innovation spaces to drive bidirectional reader participation. The aim is to provide a specific guide for the design and optimization of smart library services.

Key words: public library, intelligent service, actor-network theory, user experience, AI

CLC Number: 

  • G258.2

Fig.1

Actor-network theoretical framework"

Table 1

User experience elements of smart library services in public libraries from the perspective of actor-network theory"

维度 影响要素 要素解释
人类行动者 读者(用户) 数字素养和技能 数字素养包括信息检索、技术操作、数据理解等,技能指用户信息技术设备使用能力,表现为对公共图书馆智慧服务常规智能设备、应用软件的操作利用熟练程度等。如果用户的数字素养较低,他们可能会遇到使用障碍,产生困惑甚至放弃使用,从而影响其对图书馆智慧服务的体验和长期使用
用户服务熟悉度 用户预先对图书馆智慧服务的了解程度,直接影响他们的使用意愿和操作效率。预期决定体验标准,如果用户在体验过程中感受到图书馆提供的服务超出了他们的预先思维设想,那么他们的体验感就会得到提升
用户技术努力预期 用户对图书馆智慧服务系统学习的难易程度判断(包含耗用时间、努力与付出),即智慧服务的易得程度。反映用户在使用这些智慧服务时的心理负担和投入感知,即用户体验中的“心理负荷”。如果用户认为某个智慧服务的学习成本过高、操作繁琐或使用体验倍感顿挫,他们很可能会放弃尝试,甚至对图书馆的智慧服务产生负面体验评价
技术行动者 技术基础设备 网络连接度 指公共图书馆智慧服务网络中的人与技术之间相互连接强度,高联系度意味着密集的信息和服务流,以丰富的智慧服务类型与手段,营造个性化、沉浸式、泛在化、协同交互的用户体验。如果智慧服务不能与用户的需求有效匹配,用户可能会感到困惑或不满,进而降低其对图书馆服务的使用频率和依赖性
网络稳定性与动态变化 考量在技术更新和外部环境变化下的自愈能力和变化适应能力,如前沿技术的引入服务情况、对用户反馈建议的回复采纳情况等。关注图书馆智慧服务与用户反馈建议的回复采纳情况,能够帮助图书馆了解读者的真实需求,及时发现问题并加以改进,实现共生共创
终端互动渠道搭建 指用户与馆员在数字媒介上的互动频率和满意度,如馆员智慧服务引导、便捷与馆员联系进行答疑解惑等
环境因素 空间规划与导向系统 该层面关注环境的舒适宜人、图书馆内部空间充盈与完善度、导航系统的清晰度,涵盖实体空间内部的导向标识、互动展示屏等元素等对用户体验的影响。有效的空间规划与导航系统能提高空间利用效率,减少读者的迷失感和焦虑,确保他们能够轻松、高效地享受图书馆的各项服务
人类行动者 馆员 馆员的职业精神 表现为馆员对读者的服务态度、责任感,职业理想、精神风貌等,是图书馆职业活动的灵魂和内在驱动力
馆员的职业能力 具备扎实专业知识和熟练操作技术的馆员,能有效引导读者使用智能设备和系统,提供准确的信息支持,并及时解决技术问题
“转译”活动 用户社群 用户之间社群类互动 用户参与或分享图书馆智慧服务、相关协作项目或活动的意愿,即社会影响因素,强调社交功能和群体互动
用户与技术 终端易用性判断 如智慧服务复杂程度、设计是否直观,浏览舒适情况等,用户对智慧服务终端的易用性有直接的感知和评价
联结趋向 用户与智慧服务之间的交互次数、持续时间和个人信息反馈意愿,反映了对智慧服务的吸引力和性能期待

Fig.2

Framework diagram of user experience influence elements of smart library services in public libraries from the perspective of actor-network theory"

Table 2

Questionnaire on user experience perception issues in intelligent service systems"

网络连接度 A您觉得图书馆智慧系统与智慧设备(自动化检索系统、智能书架、手机端平台、自助服务、个性化荐书等)已配备充足,足以满足您目前的需求
A图书馆的智慧系统与设备具有很好的用户亲和力、灵活多样
网络稳定性与动态变化 A您发现若对图书馆提出建议能够及时收到回复结果、采纳与实施等
A您发现可以在图书馆体验到最新的技术设备(VR、AR、元宇宙、智能物联等)并且运行系统令人满意
空间规划与导向系统 A您觉得当前图书馆的整体空间布局很完善(有声交流分享空间,多媒体室等)
A图书馆具备传感器设备,并且能够按需调节(室内温度、湿度、光线明暗等)
终端互动渠道搭建 A如有需要,您能通过馆内智慧设备或个人移动客户端(手机、电脑、Pad等电子产品)便捷地与馆内服务管理人员联系
数字素养和技能 B您自身已经具备熟练的信息软件操作技术能力(网站浏览与检索、社交软件使用、办公软件操作等)
用户服务熟悉度 B您之前是否了解过“图书馆的智慧服务”相关宣传与功能
用户技术努力预期 B您第一次接触到图书馆的新智慧系统与设备时,没有花费太多时间与努力,很容易便能学会
馆员职业精神 C您感觉图书馆员的语言沟通能力和服务态度令人
馆员职业能力 C您发现向智慧馆员寻求帮助能够弥补智慧机器设备带来的不足
用户之间社群类互动 D您愿意推荐周围的家人朋友、同学同事使用利用图书馆的智慧服务
D您愿意参与图书馆组织的围绕“智慧图书馆”主题的活动或者协作项目(如馆藏资源检索、数字化技能讲解等宣讲)
D只要时间方便,您会经常参与图书馆组织的围绕“智慧图书馆”主题的活动或者协作项目
终端易用性判断 E图书馆对已有的智慧系统或智慧设备其使用方法或规则,介绍得通俗易懂
E您现在可以熟练操作使用图书馆已有的智慧系统和智慧设备(自助借还、自助查询等)
E您访问图书馆网站时,认为其做到了页面清晰,浏览舒适,功能查询与资源检索便于发现
联结趋向 F您平均每月使用利用图书馆智慧技术、设备、系统的次数
F您乐意接受图书馆根据您自身的检索、借阅记录,推送您可能感兴趣的其他相关内容

Table 3

Cronbach reliability analysis"

项数 样本量/个 Cronbach α系数
24 406 0.930

Table 4

KMO and Bartlett's test"

KMO值 0.948
Bartlett球形度检验 近似卡方 5 345.915
df 276
p 0.000

Table 5

Variance interpretation rate table"

因子编号 特征根 旋转前方差解释率 旋转后方差解释率
特征根 方差解释率/% 累积/% 特征根 方差解释率/% 累积/% 特征根 方差解释率/% 累积/%
1 5.549 27.746 27.746 5.549 27.746 27.746 4.850 24.250 24.250
2 3.207 16.035 43.782 3.207 16.035 43.782 2.237 11.183 35.433
3 2.145 10.725 54.507 2.145 10.725 54.507 2.199 10.994 46.427
4 1.482 7.412 61.918 1.482 7.412 61.918 2.079 10.395 56.822
5 1.086 5.428 67.346 1.086 5.428 67.346 1.732 8.658 65.480
6 0.971 4.857 72.204 0.971 4.857 72.204 1.345 6.724 72.204
7 0.801 4.006 76.210 - - - - - -
8 0.633 3.165 79.375 - - - - - -
9 0.614 3.069 82.444 - - - - - -
10 0.521 2.605 85.050 - - - - - -
11 0.451 2.255 87.305 - - - - - -
12 0.425 2.125 89.429 - - - - - -
13 0.380 1.902 91.332 - - - - - -
14 0.338 1.689 93.021 - - - - - -
15 0.315 1.576 94.597 - - - - - -
16 0.274 1.369 95.966 - - - - - -
17 0.225 1.125 97.091 - - - - - -
18 0.215 1.073 98.165 - - - - - -
19 0.186 0.930 99.095 - - - - - -
20 0.181 0.905 100.000 - - - - - -

Table 6

Load coefficient matrix table after rotation"

维度 变量 评价因子 因子载荷系数
因子1 因子2 因子3 因子4 因子5 因子6

图书馆

技术行动者

网络连接度 智慧系统与设备用户亲和力与灵活性 0.824
智慧系统与设备配备充足度与需求匹配 0.77
网络稳定与动态变化 前沿技术引入 0.855
用户反馈的回复与采纳响应 0.8
空间与导航 环境人类体感调控 0.785
空间布局清晰完备 0.748
用户馆员互动搭建 用户终端便捷沟通情况 0.772

用户

人类行动者

服务预知度 用户智慧服务了解度 0.839
数字素养和技能 信息软件操作技术能力 0.797
努力预期 智慧系统与设备时间与努力耗用 0.525

馆员

人类行动者

图书馆员支持性 馆员职业精神 0.823
馆员职业能力 0.821

人类行动者之间

“转译”活动

用户社群互动 协作活动参与意愿 0.921
参与协作活动优先级判定 0.895
社群智慧服务分享 0.507
“人类-技术行动者”之间“转译”活动 内向——终端易用性 智慧系统与设备使用规则易懂情况 0.778
门户浏览清晰与舒适情况 0.756
智慧系统与设备操作熟练度 0.603
外向——联结趋向 个人信息使用与利用 0.695
智慧系统与设备利用次数 0.621
1
周青. 以数字资源建设推动图书馆公共文化服务质量提升[N]. 中国文化报, 2025-01-21(7).
2
郭志清, 朱萌. 阅读不止于“书海”[N]. 中国文化报, 2025-04-25(2).
3
LATOUR B. Science in action: How to follow scientists and engineers through society[M]. Cambridge: Harvard University Press, 1988.
4
CALLON M, LATOUR B. Unscrewing the big Leviathan: how actors macro-structure reality and how sociologists help them to do so[J]. Advances in social theory and methodology: Toward an integration of micro-and macro-sociologies, 1981(1): 277-303.
5
戴宇辰. “旧相识”和“新重逢”: 行动者网络理论与媒介(化)研究的未来: 一个理论史视角[J]. 国际新闻界, 2019, 41(4): 68-88.
DAI Y C. The old acquaintances with a Reunion: Actor-network theory and the future of media(tization) study[J]. Chinese journal of journalism & communication, 2019, 41(4): 68-88.
6
王佃利, 付冷冷. 行动者网络理论视角下的公共政策过程分析[J]. 东岳论丛, 2021, 42(3): 146-156.
WANG D L, FU L L. Analysis of public policy process from the perspective of actor network theory[J]. Dongyue tribune, 2021, 42(3): 146-156.
7
CALLON M. The sociology of an actor-network: The case of the electric vehicle[M]// Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World. London: Palgrave Macmillan UK, 1986: 19-34.
8
LAW J. Organizing modernity: Social ordering and social theory[M]. New Jersey: Wiley-Blackwell, 1994.
9
汤晓蒙, 武茜璇. 行动者网络理论视域下民间读书会运行的个案研究[J]. 广东开放大学学报, 2023, 32(3): 20-27.
TANG X M, WU Q X. A case study of the operation of a folk reading club from the perspective of actor-network theory[J]. Journal of Guangdong open university, 2023, 32(3): 20-27.
10
谭旭豪, 韩娜. 面向群体性事件治理的应急情报服务机制研究: 基于行动者网络理论[J]. 情报探索, 2022(4): 1-10.
TAN X H, HAN N. Research on emergency intelligence service mechanism for mass incident governance: Based on actor network theory[J]. Information research, 2022(4): 1-10.
11
秦小燕, 梁颖. 主题图书馆建设行动者网络模型构建: 以杭州主题图书馆为例[J]. 图书馆杂志, 2021, 40(11): 48-56.
QIN X Y, LIANG Y. The construction of actor-network model for theme library: A case study of Hangzhou theme library[J]. Library journal, 2021, 40(11): 48-56.
12
张小强, 汪红春. 智能出版行动者网络外用户非使用行为的价值及转译[J]. 科技与出版, 2021(3): 122-128.
ZHANG X Q, WANG H C. The value and translation of non-use behavior of users outside the network of intelligent publishing actors[J]. Science-technology & publication, 2021(3): 122-128.
13
钟欢, 马秀峰. 行动者网络理论视角下高校学科服务价值隐患与消解[J]. 图书馆工作与研究, 2020(8): 20-27.
ZHONG H, MA X F. Hidden dangers and elimination of subject service value in universities from the perspective of actor network theory[J]. Library work and study, 2020(8): 20-27.
14
司莉, 罗泉. 行动者网络理论视角下的公共图书馆社会教育跨界合作[J]. 图书馆论坛, 2020, 40(8): 70-77.
SI L, LUO Q. Cross-sector collaboration on social education in public libraries: A research based on the actor-network theory[J]. Library tribune, 2020, 40(8): 70-77.
15
何逸竹, 茆意宏. 用户体验视角下的智慧书房测评研究[J]. 图书馆论坛, 2024, 44(1): 36-43.
HE Y Z, MAO Y H. A study on evaluation of smart studies from the perspective of user experience[J]. Library tribune, 2024, 44(1): 36-43.
16
许天才, 任晓宇, 许诗曼, 等. 高校图书馆服务智慧化的用户体验预期与构建策略研究[J]. 大学图书馆学报, 2023, 41(1): 78-86.
XU T C, REN X Y, XU S M, et al. Research on user experience expectations and construction strategies of intelligent services in university library[J]. Journal of academic libraries, 2023, 41(1): 78-86.
17
程越欣, 张晓阳, 王正兴, 等. 高校图书馆自助服务需求识别与质量提升策略[J]. 图书馆论坛, 2022, 42(2): 139-149.
CHENG Y X, ZHANG X Y, WANG Z X, et al. Research on identification of self-service needs and quality improvement strategies for university libraries[J]. Library tribune, 2022, 42(2): 139-149.
18
刘宝瑞, 沈苏阳. 用户体验视阈下的智慧图书馆研究[J]. 图书馆学研究, 2017(6): 43-47.
LIU B R, SHEN S Y. Study on smart library from the perspective of user experience[J]. Research on library science, 2017(6): 43-47.
19
TELLA A. The determinants of library and information science undergraduate students' first impression of university library websites[J]. Education and information technologies, 2019, 24(1): 277-294.
20
IQBAL M, RAFIQ M. Determinants of overall user success in an academic digital library environment: Validation of the integrated digital library user success (IDLUS) model[J]. The electronic library, 2023, 41(4): 387-418.
21
SILVA B D O, CAMILLO E S, GUARALDO T S B. Competência cultural na gestão da diversidade: Estudo de caso em uma biblioteca[J]. Palabra clave (la plata), 2023(1): 1-75. SILVAB D O, CAMILLOE S, GUARALDOT S B.Cultural competence in diversity management: A case study in a public library[J]. Palabra clave (la plata), 2023(1): 1-75.
22
邵波, 王怡, 王进. 智慧图书馆建设进程与发展方向: 以南京大学为例[J]. 图书情报工作, 2023, 67(13): 14-20.
SHAO B, WANG Y, WANG J. Research on the construction process and development direction of smart library: Taking Nanjing University as an example[J]. Library and information service, 2023, 67(13): 14-20.
23
王星星, 侯建胜. 智慧图书馆建设: 基本原理、实践模式与机制构建[J]. 图书馆工作与研究, 2023(9): 12-18.
WANG X X, HOU J S. Smart library construction: Fundamentals, practice model and mechanism construction[J]. Library work and study, 2023(9): 12-18.
24
李沅洁, 邵波. 智慧图书馆十年实践研究: 进展、困境与出路[J]. 图书情报工作, 2023, 67(24): 135-148.
LI Y J, SHAO B. Research on the practice of smart library in the past ten years: Progress, dilemma and outlet[J]. Library and information service, 2023, 67(24): 135-148.
25
徐宗璐, 范俊, 尤锦烨. 装配设计工艺软件界面的设计与优化[J]. 兵工自动化, 2024, 43(10): 14-16.
XU Z L, FAN J, YOU J Y. Design and optimization of assembly design process software interface[J]. Ordnance industry automation, 2024, 43(10): 14-16.
26
张立. 基于用户的移动应用产品界面视觉设计研究[J]. 理论月刊, 2017(4): 67-72, 91.
ZHANG L. Research on user-based visual design of mobile application product interface[J]. Theory monthly, 2017(4): 67-72, 91.
27
胡永生, 刘畅. 全民数字素养教育: 实践进展、热点问题与发展趋势: 2023中国图书馆学会年会主题论坛分析[J]. 图书与情报, 2024(3): 13-19.
HU Y S, LIU C. Practice progress, hot issues and development trends of digital literacy education for all: A review of the theme forum of 2023 China library annual conference[J]. Library & information, 2024(3): 13-19.
28
李晓虹, 范昌鑫. 美国高校图书馆参与学习分析的研究与启示: IMLS《为学生成功连接图书馆与学习分析》报告解读[J]. 图书情报工作, 2023, 67(11): 138-148.
LI X H, FAN C X. Study and enlightenment of participating in learning analytics of American University library: Interpretation of connecting libraries and learning analytics for student success by IMLS[J]. Library and information service, 2023, 67(11): 138-148.
29
徐洁, 姜晓云. 用户关系管理视角下大学图书馆空间再造实践与思考: 以南京师范大学图书馆为例[J]. 大学图书馆学报, 2024, 42(6): 50-56.
XU J, JIANG X Y. Practice and reflection of academic library space reconstruction through the CRM perspective: A case study of Nanjing normal university library[J]. Journal of academic libraries, 2024, 42(6): 50-56.
30
刘会会. 智慧图书馆体系下的图书馆新型阅读空间建设与发展策略研究[J]. 图书馆界, 2024(2): 60-65.
LIU H H. Research on the construction and development strategy of new reading space in library under the smart library system[J]. Library world, 2024(2): 60-65.
31
王超, 佟昕瑀. 图书馆新机遇: 借数字素养教育赋能社会: 国际图联第88届世界图书馆与信息大会(2023)会前卫星会议信息素养分会亮点集锦[J]. 图书馆杂志, 2023, 42(10): 15-19.
WANG C, TONG X Y. Libraries empowering society through digital literacy education: The highlights of the IFLA WLIC 2023 preconference satellite meeting information literacy section[J]. Library journal, 2023, 42(10): 15-19.
[1] ZHANG Tao, LYU Qianhui. Generative AI Governance Practices in Europe and the United States and the Enlightenment for China [J]. Journal of library and information science in agriculture, 2025, 37(4): 12-23.
[2] YANG Xuejie, LIU Jia, WU Qingxiao, WANG Yufei, GU Dongxiao. Big Data Dynamic Aggregation and Intelligent Service Model for Multimodal Healthcare and Eldercare [J]. Journal of library and information science in agriculture, 2025, 37(4): 24-38.
[3] SANG Yuanyuan. Multimodal Learning Technology Aimed at Exploring the Innovative Path of Library Intelligence Service [J]. Journal of library and information science in agriculture, 2025, 37(3): 42-52.
[4] SHI Zhongyan, LEI Jie, SUN Tan, ZHAO Ruixue, LI Jiao, HUANG Yongwen, XIAN Guojian. Research on DeepSeek-Empowered Low-Cost Construction of Domain-Specific Knowledge Graphs [J]. Journal of library and information science in agriculture, 2025, 37(3): 4-17.
[5] QIAO Jinhua, MA Xueyun. Risks and Regulations for Application of the LLaMA Model in University Future Learning Centers [J]. Journal of library and information science in agriculture, 2025, 37(2): 37-48.
[6] CAI Yiran, HU Zhengyin, LIU Chunjiang. Analysis of Progress in Data Mining of Scientific Literature Using Large Language Models [J]. Journal of library and information science in agriculture, 2025, 37(2): 4-22.
[7] SUN Lijuan. Exploring the Transition of Public Librarians to "Prompt Librarians" from the Perspective of New Quality Productive Forces [J]. Journal of library and information science in agriculture, 2025, 37(1): 17-32.
[8] LUO Guofeng, YI Tong, YAN Zhouzhou. Critical Information Literacy Education in University Libraries from the Perspective of AIGC Application [J]. Journal of library and information science in agriculture, 2025, 37(1): 47-58.
[9] Hecan ZHANG, Chengqi YI, Peng GUO, Qianqian HUANG, Xiaokun JIN. Copyright Data Dilemma of Building High-Quality Data System for AI: Present Situation, Coping Strategies, and Implementation Path [J]. Journal of library and information science in agriculture, 2024, 36(9): 32-43.
[10] Guanghui YE, Kai TU, Lina HU, Li HAN, Zhiming FENG. Building Consumption Data Systems Driven by AI Plus Expert for Scientific and Technical Literature Information Resources [J]. Journal of library and information science in agriculture, 2024, 36(9): 18-31.
[11] Huimin HE. Reader Knowledge Construction in Public Library Information Literacy Education based on the MOA Model [J]. Journal of library and information science in agriculture, 2024, 36(9): 58-69.
[12] Zhijun CHANG, Li QIAN, Yaoting WU, Yunpeng QU, Yue GONG, Zhixiong ZHANG. Construction of a Scientific Literature AI Data System for the Thematic Scenario: Technical Framework Research and Practice [J]. Journal of library and information science in agriculture, 2024, 36(9): 4-17.
[13] Fan YUAN, Jia LI. Opportunities, Challenges, and Future Directions for Generative Artificial Intelligence in Library Information Literacy Education: A Scoping Review [J]. Journal of library and information science in agriculture, 2024, 36(9): 44-57.
[14] Qiong LIU, Xing LIU, Guifeng LIU. Framework of AI Literacy for Multi-role Capabilities in Future Education: Based on Typical Cases of "AI + Higher Education" Application Scenarios [J]. Journal of library and information science in agriculture, 2024, 36(8): 43-55.
[15] Shuyi WANG, Wen ZENG, Weishi ZHANG, Junjie LI. Addressing the Knowledge Worker AI Literacy Gap with AI Technology [J]. Journal of library and information science in agriculture, 2024, 36(8): 20-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!