中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (6): 16-33.doi: 10.13998/j.cnki.issn1002-1248.24-0408

Previous Articles     Next Articles

Expectation Confirmation and Technology Acceptance: A Study of the Public's Attention to Accept the Government's Digital Human Avatar

Jinghao CHEN1,2, Feng JIA1, Qianxi LIU1()   

  1. 1. School of Public Policy and Management, Guangxi University, Nanning 530004
    2. Research Center of Regional Social Governance and Innovation, Guangxi University, Nanning 530004
  • Received:2024-05-16 Online:2024-06-05 Published:2024-09-30
  • Contact: Qianxi LIU

Abstract:

[Purpose/Significance] In the digital age, government digital avatars represent a significant innovative application of the integration of generative artificial intelligence and digital government. These digital avatars aim to enhance the efficiency, accessibility, and responsiveness of public services. This study aims to explore the factors and pathways that influence public acceptance of government digital avatars, providing a theoretical basis and practical insights for improving these services and enhancing the user experience. Unlike previous studies that have focused primarily on technological and functional aspects, this research emphasizes users' perceptions and expectations, filling the gap in existing research on user experience. This innovation of this paper lies in the integration of the Expectation Confirmation Theory (ECT) and the Technology Acceptance Model (TAM) and the extension of other user perception factors to systematically analyze how these factors together influence public acceptance. [Method/Process] The study adopts a comprehensive approach, integrating the Expectation Confirmation Theory (ECT) and the Technology Acceptance Model (TAM), and extends the framework to include additional user perception factors such as perceived information quality, perceived intelligence, perceived convenience, perceived attractiveness, perceived usefulness, and AI trust. Structured questionnaires were used to collect data from a diverse sample, measuring constructs such as expectation confirmation, satisfaction, and various user perception factors. The data were analyzed using structural equation modeling (SEM), which provides robust statistical insights into the relationships between these constructs. In addition, mediation effect models were used to examine indirect effects, providing a comprehensive understanding of how these factors influence public acceptance. Data were collected from a diverse group of respondents to ensure the findings are broadly applicable and representative. [Results/Conclusions] The results suggest that expectation confirmation significantly increases public satisfaction with government digital avatars, which in turn positively affects their acceptance. Perceived information quality, perceived intelligence, perceived convenience, perceived attractiveness, perceived usefulness, and AI trust serve as critical mediators in this relationship. In particular, high levels of perceived quality and intelligence significantly increase satisfaction and acceptance, while convenience and attractiveness also play an important role. AI trust emerges as a critical factor, mediating the impact of user perceptions on acceptance. However, the study does have some limitations. First, the lack of understanding of the professional backgrounds of the research population may lead to differences in acceptance between different professional groups. Future research should look more closely at different occupational groups to gain a fuller understanding. Second, the sample consisted mainly of respondents from younger demographic groups, which may affect the generalizability of the conclusions. Future research should broaden the geographical and demographic coverage of the sample to increase diversity and representativeness. In addition, the lack of qualitative research limits the depth of understanding of users' deep-seated views and needs about government digital avatars. Future research should include qualitative components, such as in-depth interviews and focus group discussions, to explore the actual experiences and specific needs of users and to complement the quantitative findings. This study provides practical recommendations for improving user satisfaction and acceptance, and for supporting the development of effective digital governance solutions. By specifically optimizing government digital avatar services, public satisfaction and trust in digital government services can be increased, further promoting the application and development of digital avatar technology in digital government.

Key words: government digital human avatar, digital government, public acceptance intention, ECT, TAM

CLC Number: 

  • G203

Fig.1

Theoretical framework"

Table 1

Measurement items and sources of variables"

变量 题项 问题 来源
感知信息质量(IQ) IQ1 我认为政务数字人提供的信息是非常可信的 GHASEMAGHAEI和HASSANEIN[31]
IQ2 我认为政务数字人提供的信息是非常准确的
IQ3 我认为政务数字人提供的信息是丰富、完善且全面的
IQ4 我认为政务数字人提供的信息非常清晰明了
感知智能(PI) PI1 我认为政务数字人的专业能力很强,能够胜任政务咨询服务的工作 BALAKRISHNAN[30]
PI2 我认为政务数字人可以以一种更高效、智能的方式提供政务咨询服务
PI3 我认为政务数字人具备很好的政务服务能力
PI4 我认为政务数字人具备提供政务咨询服务的专业技能
感知吸引力(PA) PA1 我觉得政务数字人面部很有吸引力 FILIERIR等[44]
PA2 我觉得政务数字人被培养得很得体、很优雅
PA3 我喜欢政务数字人的外观
PA4 我认为政务数字人的形象对我而言是具有吸引力的
感知人格化(ANT) ANT1 我认为政务数字人的外貌和人类很像 HUANG和YU[16]
ANT2 我认为政务数字人的声音很自然
ANT3 我发现政务数字人在提供咨询服务时,肢体工作优雅大方,自然流畅
ANT4 我觉得政务数字人在回答问题时,面部表情非常生动自然
感知便利(PC) PC1 我觉得政务数字人的使用过程很方便 LIN[45]
PC2 我觉得政务数字人很有耐心,能让办事流程更为清晰,易懂
PC3 我觉得政务数字人能帮我快速获取想要的信息
人工智能信任(TR) TR1 我认为政务数字人与我的互动是有效且具有胜任力的 计纬等[34]
TR2 我认为政务数字人可以很好地发挥其角色作用
TR3 我认为政务数字人有能力,且业务熟练
TR4 我认为政务数字人对我的回答是诚实的
TR5 我认为政务数字人的服务真诚且真实
TR6 我认为政务数字人会以我的最大利益行事
变量 题项 问题 来源
感知有用性(PU) PU1 我觉得使用政务数字人有助于提高政务服务绩效或表现 BHATTACHERJEE[8]、DAVIS[39]
PU2 我觉得使用政务数字人有助于提高政务服务的办事效率
PU3 我觉得使用政务数字人能使得办理业务变得更快速迅捷
PU4 我觉得数字政务人能满足我的办事需求,对我帮助很大
PU5 总的来说,对于居民办事,我感觉政务数字人非常有用
感知易用性(PE) PE1 我感觉政务数字人的操作很简单 BHATTACHERJEE[8]、LANKTON[46]
PE2 我觉得学习使用政务数字人对我来说非常容易
PE3 我很自信能够快速学会并熟练使用政务数字人
PE4 总的来说,我认为政务数字人使用起来很容易
期望一致(CE) CE1 我觉得政务数字人比我想象的要自然流畅 BHATTACHERJEE[8]、HUANG和YU[16]
CE2 我觉得政务数字人的外貌形象比我想象的要逼真
CE3 我觉得政务数字人的工作表现比我预期的要好
CE4 总的来说,我对政务数字人的大部分期望都得到了证实
满意度(SAT) SAT1 我认为在政府政务大厅中使用政务数字人是一个明智的选择。 徐孝军等[47]、LI等[48]
SAT2 与政务数字人进行沟通交流时会让我感到满意
SAT3 我对政务数字人的工作表现感到满意
SAT4 比起人工服务,我更喜欢政务数字人为我提供咨询服务
SAT5 总的来说,政务数字人的服务是令人满意的
接纳意愿(CI) CI1 未来我继续使用政务数字人为我提供政务咨询服务的概率很高 ASHFAQ等[49]
CI2 如果有机会,我会向别人推荐使用政务数字人
CI3 未来我会尝试使用政务数字人获取更多相关政务信息

Table 2

Demographic characteristics of the sample"

变量 类别 频率/人 百分比/%
性别 187 37.3
314 62.7
年龄 18岁以下 1 0.2
18~25岁 288 57.5
26~35岁 163 32.5
36~45岁 36 7.2
46~55岁 12 2.4
55岁以上 1 0.2
文化程度 高中及以下 18 3.6
大专 41 8.2
本科 350 69.9
硕士 89 17.8
博士 3 0.6
对政务数字人的了解程度 从来没有听说过 94 18.8
听说过,但不了解 130 25.9
有些了解 163 32.5
较为了解 93 18.6
非常了解 21 4.2

Table 3

Reliability and convergent validity test results"

变量 题项 标准化因子载荷 Cronbach's α CR AVE
感知信息质量(IQ) IQ1 0.848 0.796 0.872 0.630
IQ2 0.777
IQ3 0.735
IQ4 0.810
感知智能(PI) PI1 0.810 0.803 0.873 0.632
PI2 0.743
PI3 0.831
PI4 0.794
感知吸引力(PA) PA1 0.863 0.865 0.910 0.716
PA2 0.786
PA3 0.876
PA4 0.857
感知人格化(ANT) ANT1 0.723 0.835 0.880 0.648
ANT2 0.841
ANT3 0.809
ANT4 0.840
感知便利(PC) PC1 0.806 0.740 0.841 0.638
PC2 0.790
PC3 0.800
人工智能信任(TR) TR1 0.720 0.788 0.911 0.631
TR2 0.819
TR3 0.758
TR4 0.827
TR5 0.792
TR6 0.845
感知有用性(PU) PU1 0.702 0.850 0.880 0.722
PU2 0.760
PU3 0.809
PU4 0.799
PU5 0.788
感知易用性(PE) PE1 0.778 0.836 0.891 0.673
PE2 0.856
PE3 0.773
PE4 0.870
期望一致(CE) CE1 0.801 0.781 0.864 0.613
CE2 0.745
CE3 0.802
CE4 0.782
满意度(SAT) SAT1 0.742 0.811 0.877 0.588
SAT2 0.770
SAT3 0.801
SAT4 0.703
SAT5 0.814
接纳意愿(CI) CI1 0.820 0.753 0.860 0.672
CI2 0.821
CI3 0.819

Table 4

Discriminant validity test results"

变量 AVE IQ PI PA ANT PC TR PU PE CE SAT CI
IQ 0.630 0.794
PI 0.632 0.704 0.795
PA 0.716 0.539 0.506 0.846
ANT 0.648 0.569 0.556 0.707 0.805
PC 0.638 0.632 0.686 0.514 0.498 0.799
TR 0.631 0.697 0.726 0.574 0.628 0.717 0.794
PU 0.722 0.637 0.632 0.483 0.478 0.711 0.706 0.850
PE 0.673 0.544 0.502 0.337 0.390 0.608 0.606 0.592 0.820
CE 0.613 0.602 0.629 0.652 0.703 0.635 0.729 0.645 0.501 0.783
SAT 0.588 0.630 0.692 0.562 0.607 0.702 0.704 0.712 0.576 0.737 0.767
CI 0.672 0.592 0.595 0.488 0.521 0.703 0.731 0.713 0.560 0.621 0.736 0.820

Table 5

Test results of the structural equation model"

假设 假设路径 估计值 标准误 显著性 检验结果
H1a 期望一致→满意度 0.961 0.451 *** 成立
H1b 满意度→接纳意愿 0.403 0.151 ** 成立
H2a 感知有用性→满意度 0.413 0.071 *** 成立
H2b 感知有用性→接纳意愿 0.520 0.143 *** 成立
H2c 期望一致→感知有用性 0.728 0.054 *** 成立
H3a 感知吸引力→满意度 0.074 0.031 * 成立
H3b 期望一致→感知吸引力 0.960 0.075 *** 成立
H3c 感知人格化→满意度 0.066 0.024 * 成立
H3d 期望一致→感知人格化 0.954 0.032 * 成立
H4a 感知智能→满意度 0.179 0.091 * 成立
H4b 期望一致→感知智能 0.207 0.082 *** 成立
H4c 感知信息质量→满意度 0.324 0.091 *** 成立
H4d 期望一致→感知信息质量 0.854 0.059 *** 成立
H4e 感知便利→满意度 0.406 0.190 * 成立
H4f 期望一致→感知便利 0.902 0.061 *** 成立
H5a 人工智能信任→满意度 0.549 0.275 * 成立
H5b 期望一致→人工智能信任 0.854 0.054 *** 成立
H6a 感知易用性→感知有用性 0.195 0.034 *** 成立
H6b 感知易用性→满意度 0.073 0.028 ** 成立

Fig.2

Hypothesis testing of the structural equation model"

Table 6

Serial mediation effects"

序号 中介变量 路径 间接效应 Boot S.E. 95%CI 中介效应
下限 上限
1 感知信息质量、公众满意度 CE→IQ→CI 0.109 0.033 0.050 0.177
CE→SAT→CI 0.302 0.042 0.221 0.385
CE→IQ→SAT→CI 0.081 0.020 0.046 0.125
2 感知智能、公众满意度 CE→PI→CI 0.072 0.030 0.013 0.131
CE→SAT→CI 0.249 0.038 0.177 0.328
CE→PI→SAT→CI 0.101 0.023 0.061 0.149
3 感知便利、公众满意度 CE→PC→CI 0.191 0.041 0.111 0.271
CE→SAT→CI 0.215 0.032 0.154 0.278
CE→PC→SAT→CI 0.116 0.025 0.070 0.168
4 感知吸引力、公众满意度 CE→PA→CI 0.035 0.031 -0.025 0.096
CE→SAT→CI 0.344 0.048 0.252 0.440
CE→PA→SAT→CI 0.045 0.021 0.008 0.088
5 感知人格化、公众满意度 CE→ANT→CI 0.033 0.033 -0.031 0.098
CE→SAT→CI 0.359 0.051 0.264 0.463
CE→ANT→SAT→CI 0.033 0.022 -0.009 0.077
6 人工智能信任、公众满意度 CE→TR→CI 0.222 0.040 0.144 0.302
CE→SAT→CI 0.167 0.030 0.110 0.228
CE→TR→SAT→CI 0.146 0.029 0.092 0.205
7 感知有用性、公众满意度 CE→PU→CI 0.312 0.051 0.211 0.410
CE→SAT→CI 0.100 0.025 0.055 0.152
CE→PU→SAT→CI 0.101 0.028 0.051 0.160
8 感知有用性、公众满意度 PE→PU→CI 0.247 0.046 0.159 0.340
PE→SAT→CI 0.043 0.014 0.020 0.072
PE→PU→SAT→CI 0.112 0.029 0.059 0.173
1
中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2021-03-13].
2
中华人民共和国中央人民政府. 数字中国建设整体布局规划[EB/OL]. [2023-02-27].
3
刘玮. ChatGPT类生成式人工智能嵌入数字政府建设: 可供、限制与优化——基于技术可供性视角[J]. 情报理论与实践, 2023, 46(10): 69-76.
LIU W. Embedding ChatGPT-like generative artificial intelligence in digital government construction: Affordances, constraints, and optimization - A perspective based on technological affordance[J]. Information studies: Theory & application, 2023, 46(10): 69-76.
4
SESTINO A, D'ANGELO A. My doctor is an avatar! The effect of anthropomorphism and emotional receptivity on individuals' intention to use digital-based healthcare services[J]. Technological forecasting and social change, 2023, 191: 122505.
5
NI M Q. Digital participation for inclusive growth: A case study of Singapore's collaborative digital governance model[M]//The Urban Book Series. Cham: Springer International Publishing, 2022: 323-337.
6
KATTEL R, MERGEL I. Estonia's digital transformation: Mission mystique and the hiding hand[M]//Great Policy Successes. Cambridge, UK: Oxford University Press, 2019: 143-160.
7
TWEED A. From Eliza to Ellie: the evolution of the AI therapist[EB/OL]. [2019-09-12].
8
BHATTACHERJEE A. An empirical analysis of the antecedents of electronic commerce service continuance[J]. Decision support systems, 2001, 32(2): 201-214.
9
BHATTACHERJEE A. Understanding information systems continuance: An expectation-confirmation model[J]. MIS quarterly, 2001, 25(3): 351.
10
LEE M C. Explaining and predicting users' continuance intention toward e-learning: An extension of the expectation–confirmation model[J]. Computers & education, 2010, 54(2): 506-516.
11
GUPTA A, DHIMAN N, YOUSAF A, et al. Social comparison and continuance intention of smart fitness wearables: An extended expectation confirmation theory perspective[J]. Behaviour & information technology, 2021, 40(13): 1341-1354.
12
YUEN K F, CAI L H, QI G Q, et al. Factors influencing autonomous vehicle adoption: An application of the technology acceptance model and innovation diffusion theory[J]. Technology analysis & strategic management, 2021, 33(5): 505-519.
13
HUARNG K H, YU T H K, LEE C F. Adoption model of healthcare wearable devices[J]. Technological forecasting and social change, 2022, 174: 121286.
14
OENTORO W. Mobile payment adoption process: A serial of multiple mediation and moderation analysis[J]. The bottom line, 2021, 34(3/4): 225-244.
15
YE J H, LEE Y S, WANG C L, et al. The continuous use intention for the online learning of Chinese vocational students in the post-epidemic era: The extended technology acceptance model and expectation confirmation theory[J]. Sustainability, 2023, 15(3): 1819.
16
HUANG Y K, YU Z Y. Understanding the continuance intention for artificial intelligence news anchor: Based on the expectation confirmation theory[J]. Systems, 2023, 11(9): 438.
17
赵雪芹, 刘雅宁. 在线视频用户关闭弹幕的影响因素研究[J]. 新闻与传播评论, 2018, 71(5): 16-26.
ZHAO X Q, LIU Y N. A study on the factors influencing online video users to turn off Danmaku[J]. Journalism & communication review, 2018, 71(5): 16-26.
18
STONE R W, BAKER-EVELETH L. Students' expectation, confirmation, and continuance intention to use electronic textbooks[J]. Computers in human behavior, 2013, 29(3): 984-990.
19
OGHUMA A P, LIBAQUE-SAENZ C F, WONG S F, et al. An expectation-confirmation model of continuance intention to use mobile instant messaging[J]. Telematics and informatics, 2016, 33(1): 34-47.
20
李望平, 苏冬燕, 陈晓星, 等. 基于技术接受模型和计划行为理论的内陆核电站重启公众接受度研究[J]. 科技管理研究, 2023, 43(1): 171-180.
LI W P, SU D Y, CHEN X X, et al. Study on public acceptance of restart of inland nuclear power plants based on technology acceptance model and theory of planned behavior[J]. Science and technology management research, 2023, 43(1): 171-180.
21
TAM C, SANTOS D, OLIVEIRA T. Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model[J]. Information systems frontiers, 2020, 22(1): 243-257.
22
吴晓波, 张伟齐, 李思涵, 等. 基于技术接受模型(TAM)的智能投资顾问用户采纳意愿链式影响机制研究[J]. 浙江大学学报(人文社会科学版), 2023, 53(7): 5-19.
WU X B, ZHANG W Q, LI S H, et al. A sequential mediation model of the factors influencing the user adoption of robo-advisor: A technology acceptance model (TAM) perspective[J]. Journal of Zhejiang University (humanities and social sciences), 2023, 53(7): 5-19.
23
KAMAL S A, SHAFIQ M, KAKRIA P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM)[J]. Technology in society, 2020, 60: 101212.
24
RAHI S, GHANI M ABD. Integration of expectation confirmation theory and self-determination theory in Internet banking continuance intention[J]. Journal of science and technology policy management, 2019, 10(3): 533-550.
25
庞洋. 生成式人工智能嵌入数字政府建设的系统性分析[J]. 学术交流, 2023(8): 148-162.
PANG Y. Systematic analysis of generative artificial intelligence embedded in digital government construction[J]. Academic exchange, 2023(8): 148-162.
26
杨舒文, 包林. 数字媒体艺术中的虚拟性身体形象建构[J]. 中国高校社会科学, 2023(4): 133-141.
YANG S W, BAO L. Construction of virtual body image in digital media art[J]. Social sciences in Chinese higher education institutions, 2023(4): 133-141.
27
LI J, HUANG J S, LI Y Q. Examining the effects of authenticity fit and association fit: A digital human avatar endorsement model[J]. Journal of retailing and consumer services, 2023, 71: 103230.
28
刘斌, 崔茉琳. ChatGPT时代的虚拟数字人: 拟主体对人类认知与行为的中介[J]. 西南民族大学学报(人文社会科学版), 2023, 44(11): 126-132.
LIU B, CUI M L. Virtual digital humans in the ChatGPT era: The mediating role of quasi-subjects on human cognition and behavior[J]. Journal of southwest Minzu university (humanities and social science), 2023, 44(11): 126-132.
29
BLUT M, WANG C, WÜNDERLICH N V, et al. Understanding anthropomorphism in service provision: A meta-analysis of physical robots, chatbots, and other AI[J]. Journal of the academy of marketing science, 2021, 49(4): 632-658.
30
BALAKRISHNAN J, ABED S S, JONES P. The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?[J]. Technological forecasting and social change, 2022, 180: 121692.
31
GHASEMAGHAEI M, HASSANEIN K. Online information quality and consumer satisfaction: The moderating roles of contextual factors – A meta-analysis[J]. Information & management, 2015, 52(8): 965-981.
32
李桥. 高速铁路旅客感知便利性对旅客满意和忠诚的影响研究[J]. 铁道学报, 2021, 43(6): 1-7.
LI Q. Effects of perceived service convenience of high-speed railway passengers on passenger satisfaction and loyalty[J]. Journal of the China railway society, 2021, 43(6): 1-7.
33
汤志伟, 龚泽鹏, 韩啸, 等. 公众对智能政务服务和人工政务服务的感知与选择——基于调查实验的研究发现[J]. 电子政务, 2023(9): 105-116.
TANG Z W, GONG Z P, HAN X, et al. Public perception and choice between intelligent government services and human government services: Findings from a survey experiment[J]. E-Government, 2023(9): 105-116.
34
计纬, 戚海峰, 费鸿萍. 智能助手对消费者的推荐说服机制研究——基于社会角色视角[J/OL]. 南开管理评论, 2024: 1-23.
JI W, QI H F, FEI H P. A study on the persuasive mechanism of recommendations by intelligent assistants: Based on the social role perspective[J/OL]. Nankai business review, 2024: 1-23.
35
BEDUÉ P, FRITZSCHE A. Can we trust AI? An empirical investigation of trust requirements and guide to successful AI adoption[J]. Journal of enterprise information management, 2022, 35(2): 530-549.
36
YIGITCANLAR T, DEGIRMENCI K, INKINEN T. Drivers behind the public perception of artificial intelligence: Insights from major Australian cities[J]. AI & society, 2022: 1-21.
37
CHEN Y, PRENTICE C, WEAVEN S, et al. The influence of customer trust and artificial intelligence on customer engagement and loyalty - The case of the home-sharing industry[J]. Frontiers in psychology, 2022, 13: 912339.
38
HSIAO K L, CHEN C C. What drives continuance intention to use a food-ordering chatbot? An examination of trust and satisfaction[J]. Library hi tech, 2022, 40(4): 929-946.
39
DAVIS F D, BAGOZZI R P, WARSHAW P R. User acceptance of computer technology: A comparison of two theoretical models[J]. Management science, 1989, 35(8): 982-1003.
40
HWANG J, CHOE J Y, KIM H M, et al. Human baristas and robot baristas: How does brand experience affect brand satisfaction, brand attitude, brand attachment, and brand loyalty?[J]. International journal of hospitality management, 2021, 99: 103050.
41
NA S, HEO S, CHOI W, et al. Firm size and artificial intelligence (AI)-based technology adoption: The role of corporate size in South Korean construction companies[J]. Buildings, 2023, 13(4): 1066.
42
刘春明, 王丹, 周杨. 高校教师移动学习平台信息采纳行为研究[J]. 情报科学, 2024, 42(2): 109-118.
LIU C M, WANG D, ZHOU Y. A study on university teachers' adoption behavior of mobile learning platform information[J]. Information science, 2024, 42(2): 109-118.
43
朱哲慧, 袁勤俭. 技术接受模型及其在信息系统研究中的应用与展望[J]. 情报科学, 2018, 36(12): 168-176.
ZHU Z H, YUAN Q J. Technology acceptance model and its application and prospect in the field of information system[J]. Information science, 2018, 36(12): 168-176.
44
FILIERI R, ACIKGOZ F, LI C Y, et al. Influencers' “organic” persuasion through electronic word of mouth: A case of sincerity over brains and beauty[J]. Psychology & marketing, 2023, 40(2): 347-364.
45
LIN C Y. Perceived convenience retailer innovativeness: How does it affect consumers?[J]. Management decision, 2016, 54(4): 946-964.
46
LANKTON N, MCKNIGHT D H, THATCHER J B. Incorporating trust-in-technology into expectation disconfirmation theory[J]. The journal of strategic information systems, 2014, 23(2): 128-145.
47
许孝君, 程光辉, 钱丹丹, 等. 数字经济下旅游商务网站信息生态链运行机制对用户感知的影响研究[J]. 情报科学, 2023, 41(9): 78-86.
XU X J, CHENG G H, QIAN D D, et al. The influence of the operation mechanism of the information ecological chain of tourism business websites on user perception under the digital economy[J]. Information science, 2023, 41(9): 78-86.
48
LI L, LEE K Y, EMOKPAE E, et al. What makes you continuously use chatbot services? Evidence from Chinese online travel agencies[J]. Electronic markets, 2021, 31(3): 575-599.
49
ASHFAQ M, YUN J, YU S B, et al. I, Chatbot: Modeling the determinants of users' satisfaction and continuance intention of AI-powered service agents[J]. Telematics and informatics, 2020, 54: 101473.
50
毕达天, 张雪, 米艳霖, 等. 算法感知视角下跨平台信息推荐用户接纳意愿研究[J]. 图书情报工作, 2023, 67(21): 100-110.
BI D T, ZHANG X, MI Y L, et al. A study on user acceptance intention of cross-platform information recommendations from the perspective of algorithm perception[J]. Library and information service, 2023, 67(21): 100-110.
[1] Mo LI, Bin YANG. From Generative Artificial Intelligence to Artificial General Intelligence: Enabling Innovation Models in Library Knowledge Services [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 50-61.
[2] Ru WU, Ruhan ZHANG, Chenxing DAI, cheng LU. Intellectual Property Literacy Education in University Libraries Based on Innovative Talent Cultivation [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 79-87.
[3] XIANG Rui, SUN Wei. Methodology for Assessing the Influence of Technical Topics Based on PhraseLDA-SNA and Machine Learning [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 45-62.
[4] LIU Yang, TIAN Huiyi. Application of the EEG Technology in the Field of Library and Information Science: Current Situation and Perspectives [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 63-71.
[5] YANG Ruixian, LI Hangyi, SUN Zhuo. Privacy Protection of Social Network Data: Traceability, Technology, Policy and Perspectives [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 4-20.
[6] WANG Shan, TAN Zongying. Identification of Key Core Technologies Enables the Development of New Quality Productive Forces [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 26-35.
[7] FAN Beibei, LI Jin, FENG Xian. Effectiveness Evaluation of Rural Public Cultural Services under the Guidance of "People-Oriented": Taking Ecological Conservation Area of Beijing as an Example [J]. Journal of Library and Information Science in Agriculture, 2023, 35(9): 80-90.
[8] LYU Chen, JIANG Linjun. Open Source Software: A Study on the Copyright Licensing Investigation System of DMCA in the United States [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 78-87.
[9] WU Lei, LI Xiaojie, DING Qian, SUN Wei, ZHOU Zhengkui. Comparative Study on the Technology Gaps in the Field of Animal Husbandry and Veterinary Genomics between China and Foreign Countries [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 88-97.
[10] XU Kuiyi, LU Keqi, LU Hejian. Strategies for Promoting Chinese Public Libraries' Participation in Cultural Heritage Inheritance: Taking the Conservation of Ancient Books in Public Libraries as an Example [J]. Journal of Library and Information Science in Agriculture, 2023, 35(7): 85-93.
[11] JIN Jiaqin. Practical Exploration on the Web Scale Discovery Service Based on Micro-Service Architecture [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 89-100.
[12] ZHANG Xingwang, XIN Jie, LV Ruiqian, DUAN Xuechun. Paradigm Construction and Scene Embedding of Library Digital Collection Value Chain from the Perspective of Metaverse [J]. Journal of Library and Information Science in Agriculture, 2023, 35(3): 4-14.
[13] WANG Jinfei, SUN Wei, ZHANG Xuefu, YANG Lu. Interdisciplinarity Measurement Method of Scientific Research Papers based on Adaptive Feature Selection [J]. Journal of Library and Information Science in Agriculture, 2023, 35(3): 52-70.
[14] PAN Yigai, TANG Anyi, HUANG Liying, ZHAO Youlin, GU Chenya. Improving the Effect of Digital Live Broadcasting Activities Based on Configuration Analysis [J]. Journal of Library and Information Science in Agriculture, 2023, 35(2): 61-76.
[15] ZHAO Youlin, PANG Hangyuan, LIN Yini, PAN Yigai. The Policy Direction, Practice Development and Research Focus of Digital Marketing Activities [J]. Journal of Library and Information Science in Agriculture, 2023, 35(2): 4-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!