Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (8): 88-97.doi: 10.13998/j.cnki.issn1002-1248.23-0200
Previous Articles Next Articles
WU Lei1,2, LI Xiaojie3, DING Qian1,2, SUN Wei1,2, ZHOU Zhengkui4
CLC Number:
[1] 吴菲菲, 陈明, 黄鲁成. 基于GTM的3D生物打印专利技术空白点识别[J]. 情报杂志, 2015, 34(3): 58-64. WU F F, CHEN M, HUANG L C.Identification of patent vacuums in 3D bioprinting based on GTM[J]. Journal of intelligence, 2015, 34(3): 58-64. [2] 宫旭. 污水处理领域技术热点和技术空白点分析[J]. 中国化工贸易, 2017, 9(24): 91-93. GONG X.Analysis of the technology hotspot and the technical gap in the technical field of wastewater treatment[J]. China chemical trade, 2017, 9(24): 91-93. [3] 刘晓燕, 张淑伟, 单晓红. 技术融合的互补性与相似性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 81-87. LIU X Y, ZHANG S W, SHAN X H.Research on complementarity and similarity of technology convergence[J]. Complex systems and complexity science, 2023, 20(1): 81-87. [4] 葛小培. 专利地图的研究及其在生物医药领域中的应用[D]. 苏州: 苏州大学, 2010. GE X P.Research of the patent map and its application in the biomedical field[D]. Suzhou: Soochow University, 2010. [5] LEE S, YOON B, PARK Y.An approach to discovering new technology opportunities: Keyword-based patent map approach[J]. Technovation, 2009, 29(6/7): 481-497. [6] YOON B U, YOON C B, PARK Y T.On the development and application of a self-organizing feature map-based patent map[J]. R&D management, 2002, 32(4): 291-300. [7] CUI Y Y, ZHAO B B, XIA F.Technology opportunity recognition algorithm and decision assistance for non-drug antidepressant field in China[J]. Mathematical problems in engineering, 2022, 2022: 1-10. [8] 王东兴, 王哲, 赵帆, 等. 氢燃料电池动力船舶技术标准现状分析与发展展望[J]. 交通信息与安全, 2023, 41(2): 157-167, 178. WANG D X, WANG Z, ZHAO F, et al.State-of-the-art and prospect of technical standards for the ships powered by hydrogen fuel cells[J]. Journal of transport information and safety, 2023, 41(2): 157-167, 178. [9] 赵磊, 李鹏, 李培根. 基于专利IPC共现分析的我国海水源热泵技术发展态势[J]. 制冷与空调(四川), 2023, 37(2): 320-325. ZHAO L, LI P, LI P G.Development trend of seawater source heat pump technology in China based on patent IPC co-occurrence analysis[J]. Refrigeration & air conditioning, 2023, 37(2): 320-325. [10] 罗恺, 袁晓东. 基于LDA主题模型与社会网络的专利技术融合趋势研究——以关节机器人为例[J]. 情报杂志, 2021, 40(3): 89-97. LUO K, YUAN X D.A study on the technology convergence trend of patent based on LDA and social network - An example of joint robot[J]. Journal of intelligence, 2021, 40(3): 89-97. [11] 吴晓燕, 胡雅敏, 陈方. 基于专利共类的技术融合分析框架研究——以合成生物学领域为例[J]. 情报理论与实践, 2021, 44(10): 179-184. WU X Y, HU Y M, CHEN F.Research on technology convergence analysis framework based on patent co-classification: Taking synthetic biology as an example[J]. Information studies: Theory & application, 2021, 44(10): 179-184. [12] 张紫芸, 王文发, 马乐荣, 等. 预训练文本摘要研究综述[J]. 延安 大学学报(自然科学版), 2022, 41(1): 98-104. ZHANG Z Y, WANG W F, MA L R, et al.A review of pre-training text summarization studies[J]. Journal of Yan'an university (natural science edition), 2022, 41(1): 98-104. [13] MIHALCEA R,TARAU P.TextRank: Bringing Order into Texts[C]// Proceeding of the 2004 Conference on Empirical Method in Natural Language Processing, Association for Computational Linguistics. Special Interest Group on the Lexicon, 2004: 404-411. [14] MIKOLOV T, SUTSKEVER I, CHEN K, et al.Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2013: 3111-3119. [15] BOJANOWSKI P, GRAVE E, JOULIN A, et al.Enriching word vectors with subword information[J]. Transactions of the association for computational linguistics, 2017, 5: 135-146. [16] REIMERS N, GUREVYCH I.Sentence-BERT: Sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 3982-3992. [17] KIROS R, ZHU Y K, SALAKHUTDINOV R, et al.Skip-thought vectors[J]. Advances in neural information processing systems, 2015, 28(1): 1-11. [18] LOGESWARAN L, LEE H. An efficient framework for learning sentence representa-tions[J]. arXiv:1803.02893, 2018. [19] PAEA S, BAIRD R.Information architecture (IA): Using multidimensional scaling (MDS) and K-means clustering algorithm for analysis of card sorting data[J]. Journal of usability studies archive, 2018, 13: 138-157. [20] ESTER M, KRIEGEL H P, SANDER J, et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1996: 226-231. [21] 颜端武, 梅喜瑞, 杨雄飞, 等. 基于主题模型和词向量融合的微博文本主题聚类研究[J]. 现代情报, 2021, 41(10): 67-74. YAN D W, MEI X R, YANG X F, et al.Research on microblog text topic clustering based on the fusion of topic model and word embedding[J]. Journal of modern information, 2021, 41(10): 67-74. [22] BIDOKI M, MOOSAVI M R, FAKHRAHMAD M.A semantic ap-proach to extractive multi-document summarization: Applying sen-tence expansion for tuning of conceptual densities[J]. Information processing & management, 2020, 57(6): 102341. [23] DE MOURA VENTORIM I, LUCHI D, RODRIGUES A L, et al. BIRCHSCAN: A sampling method for applying DBSCAN to large datasets[J]. Expert systems with applica-tions, 2021, 184: 115518. [24] ZHELEZNIAK V, SAVKOV A, SHEN A, et al.Correlation coefficients and semantic textual similarity[J]. arXiv: 1905.07790, 2019. [25] 李旭彦, 朱正茂, 杨晓秋. 中外基因组学研究前沿的比较分析[J]. 中国基础科学, 2016, 18(3): 42-46, 50. LI X Y, ZHU Z M, YANG X Q.Comparative analysis on the research fronts of genomics between China and foreign[J]. China basic science, 2016, 18(3): 42-46, 50. [26] BOADU F, DU YF, XIE Y.Knowledge transfer received, entrepreneurial opportunity type, environmental dynamism, and innovative performance by overseas subsidiaries in China[J]. Technology analysis & strategic management, 2023, 35(3): 237-254. |
|