Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (3): 52-70.doi: 10.13998/j.cnki.issn1002-1248.23-0214
Previous Articles Next Articles
WANG Jinfei1, SUN Wei1,2,*, ZHANG Xuefu1,2, YANG Lu1
CLC Number:
[1] GLANZEL W, DEBACKERE K.Various aspects of interdisciplinarity in research and how to quantify and measure those[J]. Scientomet-rics, 2022, 127(9): 5551-5569. [2] 曾粤亮, 李玉海. 基于生态系统理论的跨学科科研合作运行框架与关键问题[J]. 情报资料工作, 2022, 43(3): 34-42. ZENG Y L, LI Y H.Operational framework and key issues of interdisciplinary scientific research cooperation based on ecological systems theory[J]. Information and documentation services, 2022, 43(3): 34-42. [3] European commission. Directorate general for research and innovation., research, innovation,science policy experts (rise)[M/OL]. Quests for interdisciplinarity: A challenge for the ERA and HORIZON2020, LU: Publications Office, 2015. https://data.europa.eu/doi/10.2777/499518. [4] 樊春良, 樊天. 国外学科交叉研究的发展趋势及启示[J]. 中国科学基金, 2019, 33(5): 446-452. FAN C L, FAN T.The trends of development interdisciplinary research abroad and its inspiration[J]. Bulletin of national natural science foundation of China, 2019, 33(5): 446-452. [5] 中华人民共和国科学技术进步法_中国人大网[EB/OL]. (2021-12-24)[2022-08-01].http://www.npc.gov.cn/npc/c30834/202112/1f4abe22e8ba49198acdf239889f822c.shtml. [6] 步一, 陈洪侃, 许家伟, 等. 跨学科研究的范式解析: 理解情报学术中的”范式”[J]. 情报理论与实践, 2022, 45(3): 12-18, 34. BU Y, CHEN H K, XU J W, et al.Connotations of interdisciplinarity from the perspective of paradigms: Towards "paradigms" in information science research and practices[J]. Information studies: Theory & application, 2022, 45(3): 12-18, 34. [7] STIRLING A.A general framework for analysing diversity in science, technology and society[J]. Journal of the royal society interface, 2007, 4(15): 707-719. [8] PORTER A L, RAFOLS I.Is science becoming more interdisciplinary? Measuring and mapping six research fields over time[J]. Scientometrics, 2009, 81(3): 719-745. [9] ZHANG L, ROUSSEAU R, GL?NZEL W. Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account[J]. Journal of the association for information science and technology, 2016, 67(5): 1257-1265. [10] LEYDESDORFF L, WAGNER C S, BORNMANN L.Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient[J]. Journal of informetrics, 2019, 13(1): 255-269. [11] RAFOLS I, MEYER M.Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. [12] RAFOLS I.Knowledge integration and diffusion: Measures and mapping of diversity and coherence[M]//DING Y, ROUSSEAU R, WOLFRAM D. Measuring scholarly impact. Cham: Springer, 2014: 169-190. [13] LEYDESDORFF L, WOUTERS P, BORNMANN L.Professional and citizen bibliometrics: Complementarities and ambivalences in the development and use of indicators - A state-of-the-art report[J]. Scientometrics, 2016, 109(3): 2129-2150. [14] XU H Y, GUO T, YUE Z H, et al.Interdisciplinary topics of information science: A study based on the terms interdisciplinarity index series[J]. Scientometrics, 2016, 106(2): 583-601. [15] 黄菡, 王晓光, 王依蒙. 复杂网络视角下的研究主题学科交叉测度研究[J]. 图书情报工作, 2022, 66(19): 99-109. HUANG H, WANG X G, WANG Y M.Research on the interdisciplinary measurement of research topics from the perspective of complex networks[J]. Library and information service, 2022, 66(19): 99-109. [16] 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策,2012, 27(2): 161-166, 192. YAO X, WANG X D, ZHANG Y X, et al.Summary of feature selection algorithms[J]. Control and decision, 2012, 27(2): 161-166, 192. [17] CHEN M X, CHU X Q, SUBBALAKSHMI K P.MMCoVaR: Multimodal COVID-19 vaccine focused data repository for fake news detection and a baseline architecture for classification[C]//Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2021: 31-38. [18] VAN VLASSELAER V, BRAVO C, CAELEN O, et al.APATE: A novel approach for automated credit card transaction fraud detection using network-based extensions[J]. Decision support systems, 2015, 75: 38-48. [19] 熊志斌. 信用评估中的特征选择方法研究[J]. 数量经济技术经济研究, 2016, 33(1): 142-155. XIONG Z B.Research on feature selection method in credit evaluation[J]. The journal of quantitative & technical economics, 2016, 33(1): 142-155. [20] DAHIYA S, HANDA S S, SINGH N P.A feature selection enabled hybrid-bagging algorithm for credit risk evaluation[J]. Expert Sys-tems, 2017, 34(6): e12217. [21] 赵蕴华, 张静, 李岩, 等. 基于机器学习的专利价值评估方法研究[J]. 情报科学, 2013, 31(12): 15-18. ZHAO Y H, ZHANG J, LI Y, et al.Study on evaluation for patent value based on machine learning[J]. Information science, 2013, 31 22 (12): 15-18. [22] 何向, 李莉, 王小绪. 基于机器学习的高校专利价值评估体系构建[J]. 情报工程, 2020, 6(1): 50-58. HE X, LI L, WANG X X.The construction of assessing college patent value system based on machine learning[J]. Technology intelligence engineering, 2020, 6(1): 50-58. [23] 李欣, 范明姐, 黄鲁成. 基于机器学习的专利质量评价研究[J]. 科技进步与对策, 2020, 37(24): 116-124. LI X, FAN M J, HUANG L C.Research on patent quality evaluation using machine learning[J]. Science & technology progress and policy, 2020, 37(24): 116-124. [24] 李欣, 温阳, 黄鲁成, 等. 一种基于机器学习的研究前沿识别方法研究[J]. 科研管理, 2021, 42(1): 20-32. LI X, WEN Y, HUANG L C, et al.A study of the research front identification method based on machine learning[J]. Science research management, 2021, 42(1): 20-32. [25] 钱玲飞, 贺婉莹, 杨建林. 论文学术创新力特征指标体系研究[J]. 情报科学, 2021, 39(1): 56-64. QIAN L F, HE W Y, YANG J L.The characteristic index system of academic innovation ability[J]. Information science, 2021, 39(1): 56-64. [26] 李道全, 李腾, 李玉秀. 基于自适应特征选择与KNN的网络流量分类研究[J/OL]. 计算机工程与应用: 1-9[2023-05-08]. http://kns.cnki.net/kcms/detail/11.2127.TP.20220510.1353.002.html. LI D Q, LI T, LI Y X. Research on network traffic classification based on adaptive feature selection and KNN[J/OL]. Computer Engineering and Applications: 1-9[2023-05-08]. http://kns.cnki.net/kcms/detail/11.2127.TP.20220510.1353.002.html. [27] SHAFIQ M, YU X Z, BASHIR A K, et al.A machine learning approach for feature selection traffic classification using security analysis[J]. The journal of supercomputing, 2018, 74(10): 4867-4892. [28] 刘凯. 随机森林自适应特征选择和参数优化算法研究[D]. 长春: 长春工业大学, 2018. LIU K.Research on adaptive feature selection and parameter optimization algorithm for random forest[D]. Changchun: Changchun University of Technology, 2018. [29] National academy of sciences, national academy of engineering, institute of medicine[M]//Facilitating interdisciplinary research institute of medicine[M]//Facilitating interdisciplinary research. Washington, D.C.: The National Academies Press, 2005. [30] 黄颖, 张琳, 孙蓓蓓, 等. 跨学科的三维测度——外部知识融合、内在知识会聚与科学合作模式[J]. 科学学研究, 2019, 37(1): 25-35. HUANG Y, ZHANG L, SUN B B, et al.Interdisciplinarity measurement: External knowledge integration, internal information convergence and research activity pattern[J]. Studies in science of science, 2019, 37(1): 25-35. [31] ZENG B, LYU H H, ZHAO Z Y, et al.Exploring the direction and diversity of interdisciplinary knowledge diffusion: A case study of professor Zeyuan Liu's scientific publications[J]. Scientometrics, 2021, 126(7): 6253-6272. [32] 张琳, 刘冬东, 吕琦, 等. 论文学科交叉测度研究: 从全部引文到章节引文[J]. 情报学报, 2020, 39(5): 492-499. ZHANG L, LIU D D, LYU Q, et al.Interdisciplinarity measurement in publications: From full reference analysis to sectional reference analysis[J]. Journal of the China society for scientific and technical information, 2020, 39(5): 492-499. [33] 谢娟英, 吴肇中, 郑清泉. 基于信息增益与皮尔森相关系数的2D自适应特征选择算法[J]. 陕西师范大学学报(自然科学版), 2020, 48(6): 69-81. XIE J Y, WU Z Z, ZHENG Q Q.An adaptive 2D feature selection algorithm based on information gain and Pearson correlation coefficient[J]. Journal of Shaanxi normal university (natural science edition), 2020, 48(6): 69-81. [34] CHEN R C, CARAKA R E, PILIANG A, et al.An end to end of scalable tree boosting system[J]. Sylwan, 2020, 164(5): 140-151. [35] 遆慧颖, 耿骞, 靳健. 一种基于重叠社区标签传播的学科划分方法[J]. 农业图书情报学报, 2021, 33(1): 41-52. TI H Y, GENG Q, JIN J.A COPRA based algorithm for subject di-vision[J]. Journal of library and information science in agriculture, 2021, 33(1): 41-52. [36] 张宝隆, 王昊, 张卫. 学科交叉视角下的学科区分能力测度方法及分析研究[J]. 情报学报, 2022, 41(4): 375-387. ZHANG B L, WANG H, ZHANG W.Measurement and analysis of disciplinary discriminative capacity from an interdisciplinary perspective[J]. Journal of the China society for scientific and technical information, 2022, 41(4): 375-387. [37] 韩正琪, 刘小平, 寇晶晶. 基于Rao-stirling指数和LDA模型的领域学科交叉主题识别——以纳米科技为例[J]. 情报科学, 2020, 38(2): 116-124. HAN Z Q, LIU X P, KOU J J.Interdisciplinary literature discovery based on Rao-stirling diversity indices: Case studies in nanoscience and nanotechnology[J]. Information science, 2020, 38(2): 116-124. |
[1] | CHEN Caiming, FENG Jianzhong, BAI Linyan, WANG Jian, XIE Nengfu, ZOU Jun. Representation Model of Agricultural Knowledge Graph Based on the HARP Framework [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 66-77. |
[2] | LI Yikai, YE Sa, KOU Yuantao. User Interaction Mode of Agricultural Knowledge Service System [J]. Journal of Library and Information Science in Agriculture, 2022, 34(9): 86-94. |
[3] | SHI Yunlai, CUI Yunpeng, DU Zhigang. A Classification Method of Agricultural News Text Based on BERT and Deep Active Learning [J]. Journal of Library and Information Science in Agriculture, 2022, 34(8): 19-29. |
|