Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (6): 16-28.doi: 10.13998/j.cnki.issn1002-1248.23-0347
Previous Articles Next Articles
LI Jiao1,2, ZHAO Ruixue1,2,4,*, XIAN Guojian1,2,4, HUANG Yongwen1,2, SUN Tan3,4
CLC Number:
[1] CABRIO E, VILLATA S.Five years of argument mining: A data-driven analysis[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, New York: ACM, 2018: 5427-5433. [2] HABERNAL I, GUREVYCH I.Argumentation mining in user-generated web discourse[J]. Computational linguistics, 2017, 43(1): 125-179. [3] MOENS M F, BOIY E, PALAU R M, et al.Automatic detection of arguments in legal texts[C]// Proceedings of the 11th International Conference on Artificial Intelligence and Law, New York: ACM, 2007: 225-230. [4] DOUGLAS W.Argument mining by applying artumentation schemes[J]. Studies in logic, 2011, 4(1): 38-64. [5] LIU B.Sentiment analysis and subjectivity Bing Liu[M]//Handbook of natural language processing. Chapman and Hall/CRC, 2010: 651-690. [6] HOGENBOOM A, HOGENBOOM F, KAYMAK U, et al.Mining economic sentiment using argumentation structures[C]//International Conference on Conceptual Modeling, Berlin, Heidelberg: Springer, 2010: 200-209. [7] RUMSHISKY A, GRONAS M, POTASH P, et al.Combining network and language indicators for tracking conflict intensity[M]// International conference on social informatics. Cham: Springer, 2017: 391-404. [8] ATHAR A.Sentiment analysis of citations using sentence structure-based features[C]// Proceedings of the ACL 2011 Student Session. New York: ACM, 2011: 81-87. [9] TOULMIN S E.The uses of argument[M]. Updated ed. Cambridge, UK: Cambridge University Press, 2003. [10] BUCKINGHAM SHUM S, MOTTA E, DOMINGUE J.ScholOnto: An ontology-based digital library server for research documents and discourse[J]. International journal on digital libraries, 2000, 3(3): 237-248. [11] VITALI F, PERONI S.The argument model ontology[EB/OL]. [2023-01-11].https://sparontologies.github.io/amo/current/amo.html. [12] CLARK T, CICCARESE P N, GOBLE C A.Micropublications: A semantic model for claims, evidence, arguments and annotations in biomedical communications[J]. Journal of biomedical semantics, 2014, 5: 28. [13] CICCARESE P, WU E, WONG G, et al.The SWAN biomedical discourse ontology[J]. Journal of biomedical informatics, 2008, 41(5): 739-751. [14] 王晓光, 周慧敏, 宋宁远. 科学论文论证本体设计与标注实验[J]. 情报学报, 2020, 39(9): 885-895. WANG X G, ZHOU H M, SONG N Y.Scientific paper argumentation ontology and annotation experiment[J]. Journal of the China society for scientific and technical information, 2020, 39(9): 885-895. [15] 曲佳彬, 欧石燕. 语义出版驱动的科学论文论证结构语义建模研究[J]. 现代情报, 2021, 41(12): 48-59. QU J B, OU S Y.Semantic modeling for scientific paper argumen-tation structure driven by sematic publishing[J]. Journal of modern information, 2021, 41(12): 48-59. [16] PELDSZUS A, STEDE M.From argument diagrams to argumentation mining in texts[J]. International journal of cognitive informatics and natural intelligence, 2013, 7(1): 1-31. [17] 石岳峰, 王熠, 张岳. 深度学习在论辩挖掘任务中的应用[J]. 中文信息学报, 2022, 36(7): 1-12, 23. SHI Y F, WANG Y, ZHANG Y.Deep learning in argument mining: A survey[J]. Journal of Chinese information processing, 2022, 36(7): 1-12, 23. [18] STAB C, GUREVYCH I.Parsing argumentation structures in persuasive essays[J]. Computational linguistics, 2017, 43(3): 619-659. [19] LAWRENCE J, REED C.Argument mining: A survey[J]. Computa-tional linguistics, 2020, 45(4): 765-818. [20] ROCHA G, CARDOSO H L, TEIXEIRA J.ArgMine: A framework for argumentation mining[C]//Computational Processing of the Por-tuguese Language - 12th International Conference, 2016: 13. [21] LIPPI M, TORRONI P.MARGOT: A web server for argumentation mining[J]. Expert systems with applications, 2016, 65: 292-303. [22] NICULAE V, PARK J, CARDIE C. Argument mining with struc-tured SVMs and RNNs[J]. arXiv:1704.06869, 2017. https://arxiv.org/abs/1704.06869. [23] BAR-HAIM R, BHATTACHARYA I, DINUZZO F, et al.Stance classification of context-dependent claims[C]. EACL, 2017: 251-261. [24] LEVY R, BILU Y, HERSHCOVICH D, et al.Context dependent claim detection[C]. COLING, 2014: 1489-1500. [25] DUTHIE R, BUDZYNSKA K, REED C.Mining ethos in political debate[C]. COMMA, 2016: 299-310. [26] STAB C, GUREVYCH I.Identifying argumentative discourse structures in persuasive essays[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 46-56. [27] PALAU R M, MOENS M F.Argumentation mining: The detection, classification and structure of arguments in text[C]//Proceedings of the 12th International Conference on Artificial Intelligence and Law. New York: ACM, 2009: 98-107. [28] MOCHALES R, MOENS M F.Argumentation mining[J]. Artificial intelligence and law, 2011, 19(1): 1-22. [29] GOUDAS T, LOUIZOS C, PETASIS G, et al.Argument extraction from news, blogs, and social media[M]//Hellenic conference on artificial intelligence. Cham: Springer, 2014: 287-299. [30] GROZA A, POPA O M.Mining arguments from cancer documents using natural language processing and ontologies[C]//2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP). Piscataway, New Jersey: IEEE, 2016: 77-84. [31] WACHSMUTH H, STEIN B, AJJOUR Y."PageRank" for argument relevance[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017: 1117-1127. [32] LIPPI M, TORRONI P.Argument mining: A machine learning per-spective[M]//International workshop on theory and applications of formal argumentation. Cham: Springer, 2015: 163-176. [33] SUHARTONO D, GEMA A P, WINTON S, et al.Argument annotation and analysis using deep learning with attention mechanism in Bahasa Indonesia[J]. Journal of big data, 2020, 7(1): 1-18. [34] COCARASCU O, TONI F.Identifying attack and support argumenta-tive relations using deep learning[C]//Proceedings of the 2017 Con-ference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017: 1374-1379. [35] COCARASCU O, TONI F.Combining deep learning and argumentative reasoning for the analysis of social media textual content using small data sets[J]. Computational linguistics, 2018, 44(4): 833-858. [36] NICULAE V, PARK J, CARDIE C.Argument mining with structured SVMs and RNNs[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2017: 985-995. [37] GALASSI A, LIPPI M, TORRONI P.Argumentative link prediction using residual networks and multi-objective learning[C]//Proceedings of the 5th Workshop on Argument Mining. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018: 1-10. [38] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey: IEEE, 2016: 770-778. [39] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. https://arxiv.org/abs/1810.04805. [40] ZHANG G C, NULTY P, LILLIS D. Enhancing legal argument mining with domain pre-training and neural networks[J]. arXiv:2202.13457, 2022. https://arxiv.org/abs/2202.13457. [41] SRIVASTAVA P, BHATNAGAR P, GOEL A.Argument Mining using BERT and Self-Attention based Embeddings[C]//2022 4th International Conference on Advances in Computing, Communication Control and Networking(ICAC3N). Piscataway, New Jersey: IEEE, 2023: 1536-1540. [42] WILLIAM H, SUGANDA G A.CNN-BERT for measuring agreement between argument in online discussion[J]. International journal of web information systems, 2022, 18(5/6): 356-368. [43] REIMERS N, SCHILLER B, BECK T, et al.Classification and clustering of arguments with contextualized word embeddings[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 567-578. [44] TERUEL M, CARDELLINO C, CARDELLINO F, et al.Increasing argument annotation reproducibility by using inter-annotator agreement to improve guidelines[C]. LREC, 2018: 4061-4064. [45] GRABMAIR M, ASHLEY K D, CHEN R, et al.Introducing LUIMA: An experiment in legal conceptual retrieval of vaccine injury decisions using a UIMA type system and tools[C]//Proceedings of the 15th International Conference on Artificial Intelligence and Law. New York: ACM, 2015: 69-78. [46] FREEMAN J B.A theory of argument structure[M]. Berlin; New York: Foris Publications, 1991. [47] WALTON D.Argumentation theory: A very short introduction[M]// Argumentation in artificial intelligence. Boston, MA: Springer US, 2009: 1-22. [48] IBEKE E, LIN C H, WYNER A, et al.Extracting and understanding contrastive opinion through topic relevant sentences[C]. IJCNLP, 2017: 395-400. [49] DUSMANU M, CABRIO E, VILLATA S.Argument mining on twitter: Arguments, facts and sources[C]. EMNLP, 2017: 2317-2322. [50] LAI M, CIGNARELLA A T, HERNáNDEZ FARíAS D I, et al. Multilingual stance detection in social media political debates[J]. Computer speech & language, 2020, 63: 101075. [51] FABBRI A R, RAHMAN F, RIZVI I, et al. ConvoSumm: Conversation summarization benchmark and improved abstractive summarization with argument mining[J]. arXiv:2106.00829, 2021. https://arxiv.org/abs/2106.00829. [52] LIPPI M, TORRONI P.Argument mining from speech: Detecting claims in political debates[C]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 2979-2985. [53] NADERI N, HIRST G.Argumentation mining in parliamentary dis-course[M]//Principles and practice of multi-agent systems. Cham: Springer International Publishing, 2016: 16-25. [54] MENINI S, CABRIO E, TONELLI S, et al.Never retreat, never retract: Argumentation analysis for political speeches[C]. Proceed-ings of the AAAI conference on artificial intelligence, 2018, 32(1): 4889-4896. [55] HUA X Y, WANG L. Understanding and detecting supporting argu-ments of diverse types[EB/OL]. arXiv:1705.00045, 2017. https://arxiv.org/abs/1705.00045. [56] STAB C, MILLER T, GUREVYCH I. Cross-topic argument mining from heterogeneous sources using attention-based neural networks[J]. arXiv:1802.05758, 2018. https://arxiv.org/abs/1802.05758. [57] BINDER A, VERMA B, HENNIG L. Full-text argumentation min-ing on scientific publications[J]. arXiv:2210.13084, 2022. https://arxiv.org/abs/2210.13084. [58] TEUFEL S.Argumentative zoning: Information extraction from sci-entific text[D]. Scotland: University of Edinburgh, 1999. Argumentative zoning: Information extraction from sci-entific text[D]. Scotland: University of Edinburgh, 1999. http://hdl.handle.net/1842/11456. [59] TEUFEL S, SIDDHARTHAN A, BATCHELOR C R.Towards domain-independent argumentative zoning: Evidence from chemistry and computational linguistics[C]. EMNLP, 2009: 1493-1502. [60] TEUFEL S.The structure of scientific articles - Applications to citation indexing and summarization[J]. Studies in computational linguistics, 2010, 38(2): 443-445. [61] GREEN N L.Towards mining scientific discourse using argumentation schemes[J]. Argument & computation, 2018, 9(2): 121-135. [62] LAUSCHER A, GLAVA? G, PONZETTO S P. An argument-anno-tated corpus of scientific publications[C]//Proceedings of the 5th Workshop on Argument Mining. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018: 40-46. [63] FISAS B, RONZANO F, SAGGION H.A multi-layered annotated corpus of scientific papers[C]//Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), 2016:3081-3088. [64] WANG X G, SONG N Y, ZHOU H M, et al.The representation of argumentation in scientific papers: A comparative analysis of two research areas[J]. Journal of the association for information science and technology, 2022, 73(6): 863-878. [65] LAUSCHER A, GLAVA? G, ECKERT K. ArguminSci: A tool for analyzing argumentation and rhetorical aspects in scientific writing[C]//Proceedings of the 5th Workshop on Argument Mining. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018: 22-28. [66] 牛丽慧, 欧石燕. 基于论证结构的科学论文内容呈现模式研究[J]. 情报理论与实践, 2022, 45(10): 155-163. NIU L H, OU S Y.Research on the content presentation mode of sci-entific articles based on argument structure[J]. Information studies: Theory & application, 2022, 45(10): 155-163. [67] LIPPI M, TORRONI P.Argumentation mining: State of the art and emerging trends[J]. ACM transactions on Internet technology, 16(2): 1-25. [68] MESTRE R, MILICIN R, MIDDLETON S, et al.M-arg: Multimodal argument mining dataset for political debates with audio and tran-scripts[C]//Proceedings of the 8th Workshop on Argument Mining. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021: 78-88. [69] MANCINI E, RUGGERI F, ANDREA G, et al.Multimodal argu-ment mining: A case study in political debates[C]//Proceedings of the 9th Workshop on Argument Mining, Co-Located with the 29th International Conference on Computational Linguistic, 2022: 158-170. [70] OpenAI. GPT-4 technical report[J]. arXiv preprint arXiv:2303. 08774, 2023. [71] POJONI M L, DUMANI L, SCHENKEL R.Argument-mining from podcasts using ChatGPT[C]//ICCBR TMG'23: Workshop on Text Mining and Generation at ICCBR2023, 2023. |
|