中文    English

Journal of library and information science in agriculture

   

A study of the Core Competence Model of Compound AI Librarians in the Intelligent Transformation of University Libraries

JIANG Jingze, ZHOU Tianmin, LI Mei, CHENG Cheng, CHEN Haiyan   

  1. Library and Archives of Hainan Medical University, Haikou 571199
  • Received:2025-06-04 Online:2025-10-17

Abstract:

[Purpose/Significance] With the rapid advancement of artificial intelligence (AI), university libraries are undergoing a deep transformation from traditional resource repositories to intelligent service ecosystems. This transformation poses a significant challenge to the conventional competencies of librarians and underscores the necessity for a systematic reconstruction of these competencies. Existing studies often lack empirically supported and integrative models, and they seldom bridge the gap between AI application and competence development. To address these shortcomings, this study proposes a core competence model for hybrid AI librarians, integrating technical, service, and management dimensions. The research highlights its innovation by not only theorizing but also empirically validating the model through grounded data, positioning the study as a meaningful contribution to the discourse on digital librarianship. Different from previous literature, it integrates AI platform practices within the competency framework. This integration serves to enrich both theoretical underpinnings and enhance the practical applicability of the theory. This provides actionable implications for the sustainable development of librarianship in the context of national strategies for digital transformation and technological innovation. [Method/Process] The study employed a mixed-methods approach. First, a literature review was conducted to analyze trends in AI applications within university libraries. Then, semi-structured in-depth interviews were carried out with ten librarians from multiple universities that have deployed the DeepSeek intelligent platform. The participants covered technical, service, and management positions, with more than three years of experience using AI tools and a distribution across middle to senior professional titles. Following data collection, the grounded theory was applied with three levels of coding (open, axial, and selective) to inductively derive categories and explore how technical, service, and management competencies interact. The principle of data saturation was strictly observed to ensure methodological rigor, and no additional categories emerged after the three competency domains were established. [Results/ [Conclusions] Findings indicate that the core competencies of hybrid AI librarians revolve around three interdependent domains. Technical competence involves intelligent tool operation, data analysis, and system maintenance, supporting the integration of AI into daily workflows. Service competence emphasizes user-centered design, personalized recommendation, and human-AI collaborative interaction, ensuring that technical functions translate into user value. Management competence addresses resource allocation, cross-department collaboration, and ethical governance, safeguarding sustainability, compliance, and innovation. Together, these dimensions form a "technology-service-management" dynamic balance model, characterized by reinforcing loops in which technology drives service, service demands managerial support, and management stabilizes technology-service integration. Furthermore, a training and cultivation framework was proposed, offering differentiated professional pathways based on librarians' roles and growth stages. The study concluded that such a model not only enhances service effectiveness but also contributes to national innovation strategies. The study's limitations include its scope, which is limited to a single country and a small sample size. Future research should expand the sample base, employ comparative studies across institutions, and further examine the weighting of competencies.

Key words: university library, AI literacy, compound AI librarian, core competence model, deepSeek platform, artificial intelligence technology

CLC Number: 

  • G250

Table 1

Three-dimensional open coding framework for the competency system of hybrid AI-enhanced librarians​"

维度​ ​初始编码​ ​概念化 ​属性与维度
​​技术能力​​ AI工具操作效率提升 工具熟练度 技术适配性:操作速度、功能掌握程度
编程技能与数据分析 数据解析能力 技术深度:代码应用、算法优化
系统异常处理经验 系统运维能力 技术稳定性:故障响应、维护能力
多系统协同困难 工具整合障碍 技术复杂度:跨平台操作、兼容性问题
​​服务能力​​ 数据驱动的服务设计 个性化服务 服务创新性:需求匹配、定制化水平
人机协作模式局限 服务边界限制 服务有效性:技术赋能范围、人工补充需求
场景化服务创新 沉浸式服务 服务吸引力:场景构建、体验设计
特殊群体服务障碍 无障碍服务缺失 服务包容性:适老化设计、技术普惠性
​​管理能力​​ 数据驱动的资源决策 资源配置优化 管理科学性:预测准确性、决策支持度
定期沟通机制 跨部门协同 管理效率:沟通成本、响应速度
算法偏差治理 伦理风险控制 管理合规性:公平性审查、隐私保护
培训制度缺陷 能力培养断层 管理持续性:培训覆盖率、知识更新机制

Table 2

Axial coding matrix of core competency elements for hybrid AI-enhanced librarians​"

​主范畴​ ​关联范畴​ ​关系类型​ ​典型关系​
​​技术赋能性​​

工具熟练度

数据解析能力

现象-条件-结果 馆员对AI工具的熟练操作(条件)→提升数据处理效率(现象)→服务响应速度加快(结果)
系统运维能力 行动-结果 系统故障时的快速响应(行动)→保障服务连续性(结果)
​​服务转化力​​

个性化服务

人机协作

策略-效果

基于用户画像的定制服务(策略)→提升用户满意度(效果)

人机分工优化(策略)→ 解决复杂咨询问题(效果)

场景化创新 条件-互动 VR技术应用(条件)+通识课嵌入(互动)→用户参与度翻倍
​​管理协同性​​

资源配置优化

跨部门协作

机制-调节 数据驱动的采购决策(机制)→降低经费分配误差(调节效果)
伦理风险控制 约束-平衡 算法偏见审查(约束)→保障服务公平性(平衡)
​​能力交互机制​​

技术赋能边界

人文关怀流失

张力-调和 AI处理效率提升(技术优势)vs新用户不适应(服务缺陷)→增加基础培训(调和)

数据决策依赖

人工判断保留

互补-强化 DeepSeek热点预测(数据决策)+学科馆员经验(人工判断)→提升准确率

​Table 3 Logical correlation matrix of core competency elements for hybrid AI-enhanced librarians​​"

核心范畴​ ​主范畴 副范畴​ 关系类型 作用机制​
​技术能力 技术赋能性 工具熟练度 基础驱动关系 AI工具操作效率决定服务响应速度下限
数据解析能力 条件制约关系 数据分析深度限制服务创新高度
系统运维能力 稳定保障关系 技术稳定性保障服务连续性
​服务能力​ 服务转化力 个性化服务 价值转化关系 将技术输出转化为用户可感知价值
人机协作 互补性关系 明确技术赋能边界与人工作用范围
场景化创新 催化性关系 技术应用场景设计决定服务吸引力
​管理能力​ 管理协同性 资源配置优化 调节性关系 数据驱动决策提升资源使用效率
跨部门协作 协同性关系 打破部门壁垒实现技术-服务整合
伦理风险控制 约束性关系 设定技术应用伦理边界
​交互机制​ 能力动态平衡 技术-服务转化链 正向增强关系 技术迭代→服务创新→反馈优化(正循环)
管理-能力调节环 动态平衡关系 管理机制约束技术激进性,补偿服务缺陷
伦理风险阈值 边界约束关系 突破伦理边界导致效能断崖式下跌

Fig.1

Core competence model diagram of compound AI librarians"

Fig.2

Core competence training model diagram of compound AI librarians"

[1]
魏丽丽. AI赋能图书馆服务焕新[J]. 文化产业, 2025(14): 10-12.
WEI L L. AI empowers library services to renew[J]. Culture industry, 2025(14): 10-12.
[2]
中国高校校办产业协会. 高等院校智慧型图书馆建设要求 [S]. 北京: 中国高校校办产业协会, 2024.
[3]
王松云, 梅昊. AI时代高校图书馆员职业发展探析[J]. 宿州学院学报, 2024, 39(11): 80-84.
WANG S Y, MEI H. Study on the career development of university librarian in AI era[J]. Journal of Suzhou University, 2024, 39(11): 80-84.
[4]
汤浩家. 生成式AI回答事实型参考咨询问题的效果与启示[J]. 图书馆研究与工作, 2025(5): 24-31.
TANG H J. The effectiveness and implications of generative AI in answering fact-based questions in reference services[J]. Library science research & work, 2025(5): 24-31.
[5]
洪辉, 林俊伟, 肖铮, 等. DeepSeek驱动的高校图书馆AI应用发展现状、挑战及前景: 与云瀚联盟专家的对话与思考[J]. 信息与管理研究, 2025, 10(3): 32-40.
HONG H, LIN J W, XIAO Z, et al. Current status, challenges, and prospects of DeepSeek-driven AI applications in university libraries: Expert dialogues and analysis from the Yunhan community[J]. Journal of information and management, 2025, 10(3): 32-40.
[6]
许磊. 大模型时代图书馆员的AI应用开发: ESSE方法论与实践探索[J]. 信息与管理研究, 2025, 10(1): 20-33.
XU L. AI application development for librarians in the era of large language models: ESSE methodology and practical exploration[J]. Journal of information and management, 2025, 10(1): 20-33.
[7]
钟坚安. 图书馆员AI素养的构成研究[J]. 图书馆界, 2025(1): 46-51, 82.
ZHONG J A. Study on the composition of librarians' AI literacy[J]. Library world, 2025(1): 46-51, 82.
[8]
张静蓓, 徐亚苹, 周琼, 蔡迎春. 未来学习中心建设:图书馆的角色定位、功能重塑及实践探索[J]. 农业图书情报学报, 2023, 35(6): 43-50.
ZHANG J B, XU Y P, ZHOU Qi, et al. Future learning centers: A study on libraries' role reorientation, function reconstruction, and practical innovations[J]. Journal of library and information science in agriculture, 2023, 35(6): 43-50.
[9]
University of Edinburgh. Using generative AI tools in academic work[EB/OL]. [2025-01-03].
[10]
Macquarie University. Using AI-powered tools for literature reviews[EB/OL]. [2025-01-03].
[11]
The University of British Columbia. Using AI in library research and learning[EB/OL]. [2024-10-20].
[12]
李卫姣, 虞晨琳, 蔡迎春. 高校图书馆AI素养教育的多维实践路径探析: 以上海外国语大学图书馆为例[J]. 图书馆杂志, 2025, 44(8): 20-29.
LI W J, YU C L, CAI Y C. Exploring multidimensional practice path of AI literacy education in university libraries: A case study of Shanghai international studies university library[J]. Library journal, 2025, 44(8): 20-29.
[13]
刘琼, 刘星, 刘桂锋. “人工智能+高等教育”应用场景下的AI素养框架研究[J]. 农业图书情报学报, 2024, 36(8): 43-55.
LIU Q, LIU X, LIU G F. Framework of AI literacy for multi-role capabilities in future education: Based on typical cases of "AI + Higher Education" application scenarios[J]. Journal of library and information science in agriculture, 2024, 36(8): 43-55.
[14]
胡伟群, 徐曦, 石钰莹, 等. 生成式AI时代图书馆员AI素养的培养路径探索[J]. 图书馆界, 2025(2): 38-43.
HU W Q, XU X, SHI Y Y, et al. Exploring the path of cultivating librarian literacy in the era of generative artificial intelligence[J]. Library world, 2025(2): 38-43.
[15]
孙丽娟. 新质生产力视域下公共图书馆员向提示词馆员转型探索[J]. 农业图书情报学报, 2025, 37(1): 17-32.
SUN L J. Exploring the transition of public librarians to “prompt librarians” from the perspective of new quality productive forces[J]. Journal of library and information science in agriculture, 2025, 37(1): 17-32.
[16]
李浩, 左静远. AI时代公共图书馆员角色重塑与胜任力思考[J]. 图书馆界, 2024(6): 54-59.
LI H, ZUO J Y. Reshaping the role and competence thinking of public librarians in the AI era[J]. Library world, 2024(6): 54-59.
[17]
张文迪, 陈燕方. 生成式AI助力图书馆员数字素养提升[C]//2024年第十七届图书馆管理与服务创新论坛论文集. 泉州: 中国人民大学图书馆, 2024: 79.
[18]
郭亚军, 冯思倩, 寇旭颍, 等. 生成式AI背景下的图书馆员: 角色、技能与进路[J]. 图书情报工作, 2024, 68(13): 69-77.
GUO Y J, FENG S Q, KOU X Y, et al. Librarians in the context of generative AI: Roles, skills, and approaches[J]. Library and information service, 2024, 68(13): 69-77.
[19]
瞿沙蔓. 高校图书馆须在变革中创新服务[EB/OL]. [2025-03-28].
[20]
张兴旺, 李洁, 李思凡, 等. DeepSeek赋能图书馆知识服务的理论模型、模式创新与重要启示[J]. 农业图书情报学报, 2025, 37(1): 4-16.
ZHANG X W, LI J, LI S F, et al. Theoretical model, model innovation and important enlightenment of DeepSeek empowering library knowledge service[J]. Journal of library and information science in agriculture, 2025, 37(1): 4-16.
[1] SHEN Hongjie, SHEN Hongwei, WANG Junli. Generative AI Empowering Information Literacy Education in Digital Libraries: Path Exploration, Challenge Analysis, and Response Strategies [J]. Journal of library and information science in agriculture, 2025, 37(7): 50-60.
[2] ZHANG Tao, WU Sihang. How Achievement Goal Orientation Influences College Students' Usage Behaviors of AI Tutoring Tools: An Empirical Study Based on Dual Mediation [J]. Journal of library and information science in agriculture, 2025, 37(7): 91-105.
[3] JIANG Yumeng. An Investigation and Enlightenment on the Current Status of AI Literacy Education in Nordic University Libraries [J]. Journal of library and information science in agriculture, 2025, 37(7): 19-34.
[4] ZHAI Jun, MENG Zihan, LI Fangsu, SHEN Lixin. AI Guides in Research Libraries of North America under the AI4S Context: Based on the Survey of 125 ARL Libraries [J]. Journal of library and information science in agriculture, 2025, 37(7): 35-49.
[5] DAI Xinwei, LI Feng. Enlightenment of AI Literacy Educational Designs and Practices at Japanese MDASH Literacy-level Approved Universities [J]. Journal of library and information science in agriculture, 2025, 37(5): 86-101.
[6] ZHANG Weichong, XU Chen, ZHU Yiran. Cultivation Path of AI Literacy for Grassroots Civil Servants Based on the Integrated TAM-IDT Model [J]. Journal of library and information science in agriculture, 2025, 37(5): 72-85.
[7] SUN Zhimei, LIU Yan, LIU Wenyun, LI Ruiqin. Perception and Utilization of Digital Literacy Knowledge by University Library Users from Representational Pers Perspective [J]. Journal of library and information science in agriculture, 2025, 37(2): 23-36.
[8] SUN Lijuan. Exploring the Transition of Public Librarians to "Prompt Librarians" from the Perspective of New Quality Productive Forces [J]. Journal of library and information science in agriculture, 2025, 37(1): 17-32.
[9] Fan YUAN, Jia LI. Opportunities, Challenges, and Future Directions for Generative Artificial Intelligence in Library Information Literacy Education: A Scoping Review [J]. Journal of library and information science in agriculture, 2024, 36(9): 44-57.
[10] Qiong LIU, Xing LIU, Guifeng LIU. Framework of AI Literacy for Multi-role Capabilities in Future Education: Based on Typical Cases of "AI + Higher Education" Application Scenarios [J]. Journal of library and information science in agriculture, 2024, 36(8): 43-55.
[11] Shuyi WANG, Wen ZENG, Weishi ZHANG, Junjie LI. Addressing the Knowledge Worker AI Literacy Gap with AI Technology [J]. Journal of library and information science in agriculture, 2024, 36(8): 20-33.
[12] Baiyang LI, Rong SUN. Construction of an AI Literacy General Education Curriculum Based on "Knowledge-Skills" Navigation [J]. Journal of library and information science in agriculture, 2024, 36(8): 34-42.
[13] Dan WU, Xinjue SUN. Exploring Human-centered AI Literacy Education: Interpretation and Insights from UNESCO's AI Competency Framework for Teachers and Students [J]. Journal of library and information science in agriculture, 2024, 36(8): 4-19.
[14] Ru WU, Ruhan ZHANG, Chenxing DAI, cheng LU. Intellectual Property Literacy Education in University Libraries Based on Innovative Talent Cultivation [J]. Journal of library and information science in agriculture, 2024, 36(6): 79-87.
[15] LUO Guofeng, LIU Qingsheng. Application Scene and Practice of ChatGPT Empowering Information Literacy Education [J]. Journal of library and information science in agriculture, 2024, 36(4): 91-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!