中文    English

Journal of library and information science in agriculture

   

Cultivation Path of AI Literacy for Grassroots Civil Servants Based on the Integrated TAM-IDT Model

ZHANG Weichong1,2, XU Chen1, ZHU Yiran1   

  1. 1. School of Humanities and Social Sciences, North China Electric Power University, Baoding 071003
    2. Regional Center for Rule of Law and Judicial Governance Research, North China Electric Power University, Baoding 071003
  • Received:2025-04-17 Online:2025-07-28

Abstract:

[Purpose/Significance] As digital government accelerates, the artificial intelligence (AI) literacy of grassroots civil servants has become critical to promoting smart government management. Grassroots-level civil servants who possess high levels of digital and AI literacy are indispensable drivers in establishing a digital and smart government. However, significant differences among grassroots civil servants in AI literacy and digital skills adaptation make it difficult for them to fully adapt to the requirements of smart government management. To effectively apply AI technologies in grassroots governance, it is essential for the effective application of AI technologies in grassroots governance to systematically identify its influencing factors and propose targeted cultivation paths, thereby improving public service quality and governance efficiency. [Method/Process] This study integrates the Technology Acceptance Model (TAM) and Innovation Diffusion Theory (IDT) to construct a TAM-IDT analytical framework. Based on empirical research identifying the AI literacy deficiencies of current grassroots civil servants, the TAM-IDT analytical framework systematically examines the impact mechanisms of key variables, perceived usefulness, perceived ease of use, and behavioral attitude, on AI literacy. The framework also proposes stage-based and group-specific cultivation strategies. The study uses local government civil servants as its research sample. It collects data through questionnaires and interviews, and employs structural equation modeling and mediation effect analysis for empirical validation. [Results/Conclusions] The findings reveal that behavioral attitude has a significant positive impact on AI literacy. Perceived usefulness notably enhances behavioral intention, while perceived ease of use has a negative effect on behavioral attitude, suggesting that individuals who perceive greater difficulty may be more motivated to learn. However, one of the highlights of this study is that civil servants who are proficient in AI technology or have used it in their work have a lower desire to learn more about it. Further analysis shows that perceived ease of use positively influences behavioral attitude indirectly through perceived usefulness. Additionally, both cognitive variables indirectly affect AI literacy via behavioral attitude, forming a "cognition-intention-behavior" influence chain. Based on these results and the classification of stages and types of technology adoption using Innovation Diffusion Theory (IDT), a three-dimensional, differentiated AI literacy cultivation strategy called "perception diffusion collaboration" was proposed. This strategy is based on the five elements, stages, and the groups of people involved in innovation diffusion. It offers a theoretical foundation and practical path for improving AI literacy among grassroots civil servants and advancing the modernization of grassroots governance.

Key words: AI literacy, technology acceptance model, grassroots civil servants, innovation diffusion theory, governance modernization

CLC Number: 

  • D630.3

Fig.1

An AI literacy analysis framework for grassroots civil servants based on TAM-IDT integration model"

Table 1

Results of Cronbach's alpha coefficient test for deleted items"

指标

删除项后

的平均值

删除项后

的方差

删除的项与删除项

后的总体的相关性

删除项后的

Cronbach's α系数

AI使用频率 40.977 34.221 0.087 0.907
数字素养基础 41.185 33.229 0.583 0.844
AI使用熟练度 40.921 32.042 0.678 0.837
AI工作准确性评价 40.883 31.011 0.557 0.844
AI素养认知 41.543 34.282 0.285 0.862
AI技术学习速度 40.958 30.962 0.884 0.827
单位AI使用需求 43.053 37.565 -0.024 0.877
AI技术接受速度 41.128 32.336 0.770 0.835
AI工作时效性评价 42.091 31.805 0.738 0.834
提升自身AI素养重要性 40.958 30.962 0.884 0.827
提升AI素养意愿程度 41.158 33.159 0.913 0.836
简便程度 40.996 30.156 0.863 0.824
素养评价 41.158 33.159 0.913 0.836

Table 2

Conceptualization and categorization extraction process and results of semi-structured interviews"

原始访谈资料中的代表性语句

概念化

(初始概念)

范畴化

(概念范畴)

A01 像办公软件、政务系统这样的数字技术,在日常工作中经常接触 数字技术日常使用频率 数字技术使用频率
A02 像你说的目录生成、交叉引用、写材料时用数据透视表这些更高级的办公软件运用,简单的我们都会用,复杂函数不经常用 办公软件复杂功能掌握程度 数字素养基础能力
A04 在基层治理中引入AI技术,我所了解到的相关政府部门都还没推广使用,只是听过名字 基层治理AI应用场景认知 AI素养认知
A10 AI技术在单位的推广,领导和同事的态度差异大,年轻的同事更愿意学习尝试 AI技术推广态度差异
A14 未来基层工作中AI技术可能会在智慧社区治理扩大规模,普及化地去使用 AI未来应用预判
A03 目前单位已配备智能办公软件,有时会用AI辅助写作,但像你说的使用AI智能数据分析工具,这个就很少,几乎没有 智能办公软件配备及使用情况 AI素养实践
A06 推广AI技术助力基层工作肯定是会遇到一系列的顾虑或难题的 AI技术推广顾虑
A08 在使用AI技术过程中遇到过的技术故障或不兼容问题,比如服务器繁忙等 AI技术应用故障
A07 AI技术对提升工作效率的帮助程度,在智能分类文件工作中体现得较明显 AI效率提升感知 AI素养价值意识
A11 现在学会用AI,肯定能提高我们工作效率,对我们的职业发展也有积极影响,可能会改变职业路径 AI素养职业发展关联
A12 对比传统工作方式,AI辅助下工作质量有提高,但目前变化不很明显 AI工作质量影响
A09 目前基层公务员在AI素养提升上,最缺的资源是理论,很多同事理论知识学不会 AI素养提升资源缺口 AI素养提升需求
A13 参与过AI相关的交流分享会,感受到交流内容对实际工作有一定帮助 AI交流分享效能
A13 未来还是希望能有多一些这方面的培训,教我们一些强实操性的办公技能吧 AI培训需求

Table 3

Structural equation modeling factor load factor table"

因子 变量 非标准载荷系数 标准化载荷系数 z S.E. P
感知有用性 AI工作准确性评价 1 0.623 - - -
AI工作时效性评价 0.826 0.729 4.609 0.179 0.000***
提升自身AI素养重要性 1.023 0.926 5.47 0.187 0.000***
AI使用频率 0.33 0.134 0.962 0.343 0.336
感知易用性 简便程度 1 0.993 - - -
行为态度 提升AI素养意愿程度 1 0.995 - - -
素养水平 数字素养基础 1 0.597 - - -
AI使用熟练度 1.523 0.826 4.82 0.316 0.000***
AI素养认知情况 0.804 0.354 2.449 0.328 0.014**
AI技术学习速度 1.507 0.865 4.965 0.303 0.000***
素养评价 1.136 0.995 5.389 0.211 0.000***

Fig.2

Path diagram of structural equation model"

Table 4

Results of mediation effect test"

自变量 因变量 直接效应系数 间接效应系数 总效应系数 中介效应占比/%
感知易用性 行为态度 -0.367** 0.612*** 0.245** 71.63
感知易用性 AI素养水平 0.138 0.521*** 0.659*** 79.06
感知有用性 AI素养水平 0.214** 0.557*** 0.771*** 72.24
[1]
张红春, 杨欢. 数字政府背景下的公务员数字素养框架: 一个概念模型[J]. 电子政务, 2023(1): 110-124.
ZHANG H C, YANG H. Digital literacy framework of civil servants under the background of digital government: A conceptual model[J]. E-Government, 2023(1): 110-124.
[2]
米加宁, 章昌平, 李大宇, 等. “数字空间”政府及其研究纲领: 第四次工业革命引致的政府形态变革[J]. 公共管理学报, 2020, 17(1): 1-17, 168.
MI J N, ZHANG C P, LI D Y, et al. “Digital space government” research program: Government reforming caused by the fourth industrial revolution[J]. Journal of public management, 2020, 17(1): 1-17, 168.
[3]
孟庆国, 王友奎, 陈思丞. 官员任期、财政资源与数字时代地方政府组织声誉建构: 基于2000万条省级政府网站数据的实证研究[J]. 公共管理与政策评论, 2022, 11(4): 20-37.
MENG Q G, WANG Y K, CHEN S C. Official tenure, financial resources and organizational reputation construction of local government in digital era: An empirical study based on 20 million provincial government website data[J]. Public administration and policy review, 2022, 11(4): 20-37.
[4]
孟天广. 政府数字化转型的要素、机制与路径: 兼论“技术赋能”与“技术赋权”的双向驱动[J]. 治理研究, 2021, 37(1): 5-14, 2.
MENG T G. Elements, mechanisms and approaches towards digital transformation of government: The dual drivers from technical empowerment to the state and society[J]. Governance studies, 2021, 37(1): 5-14, 2.
[5]
朱仁崎, 潘晓庆, 应验. 干部数字素养的指标构建与评估[J]. 中国行政管理, 2024(7): 29-38.
ZHU R Q, PAN X Q, YING Y. Research on the index construction, empirical evaluation and improvement suggestions of digital literacy of cadres[J]. Chinese public administration, 2024(7): 29-38.
[6]
魏巍, 李昕遥. 数字政府建设背景下基层公务员数字素养的概念内涵与提升路径[J]. 秘书, 2023(1): 84-94.
WEI W, LI X Y. Concept connotation and promotion path of grassroots civil servants' digital literacy under the background of digital government construction[J]. Secretary, 2023(1): 84-94.
[7]
马亮. 公务员的信息技术能力与数字政府建设: 中国城市的调查研究[J]. 广西师范大学学报(哲学社会科学版), 2020, 56(2): 34-44.
MA L. Civil servants' information technology capacity and the construction of digital government: Evidence from a nationwide survey of urban China[J]. Journal of Guangxi normal university (philosophy and social sciences edition), 2020, 56(2): 34-44.
[8]
李晓静, 冯紫薇. 数字中国背景下提升政务人员数字素养的国际经验与实践路径[J]. 湖南大学学报(社会科学版), 2024, 38(2): 145-153.
LI X J, FENG Z W. International experience and practical path in improving digital literacy of civil servants under the background of digital China[J]. Journal of Hunan University (social sciences), 2024, 38(2): 145-153.
[9]
LINDAUER S. AI literacy: A framework to understand, evaluate, and use emerging technology[R/OL]. [2024-04-23].
[10]
崔宇红, 赵锦涛. 人工智能素养视域下高校学生用户使用AIGC信息行为分析[J]. 农业图书情报学报, 2024, 36(11): 20-32.
CUI Y H, ZHAO J T. AIGC using behavior analysis from the perspective of artificial intelligence literacy[J]. Journal of library and information science in agriculture, 2024, 36(11): 20-32.
[11]
余维杰, 郑梦婷, 张颖. 中外人工智能素养框架研究[J]. 图书馆杂志, 2025, 44(6): 17-26, 129.
YU W J, ZHENG M T, ZHANG Y. Research on artificial intelligence literacy frameworks in China and abroad[J]. Library journal, 2025, 44(6): 17-26, 129.
[12]
LONG D R, MAGERKO B. What is AI literacy? competencies and design considerations[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu HI USA. ACM, 2020: 1-16.
[13]
郭亚军, 寇旭颍, 冯思倩, 等. 人工智能素养: 内涵剖析与评估标准构建[J]. 图书馆论坛, 2025, 45(2): 42-50.
GUO Y J, KOU X Y, FENG S Q, et al. Artificial intelligence literacy: Connotation analysis and evaluation criteria[J]. Library tribune, 2025, 45(2): 42-50.
[14]
石峰, 李齐, 陈阳. 公务员人工智能素养: 内涵界定、外延解析与指标构建[J/OL]. 电子政务, 2025: 1-11.
SHI F, LI Q, CHEN Y. Civil servant's artificial intelligence literacy: Connotation definition, extension analysis and index construction[J/OL]. E-Government, 2025: 1-11.
[15]
PINSKI M, HOFMANN T, BENLIAN A. AI Literacy for the top management: An upper echelons perspective on corporate AI orientation and implementation ability[J]. Electronic markets, 2024, 34(1): 24.
[16]
SU J H, YANG W P. AI literacy curriculum and its relation to children's perceptions of robots and attitudes towards engineering and science: An intervention study in early childhood education[J]. Journal of computer assisted learning, 2024, 40(1): 241-253.
[17]
SMITH F, SADEK M, WAN E, et al. Codesigning AI with end-users: An AI literacy toolkit for nontechnical audiences[J]. Interacting with computers, 2024: iwae029.
[18]
DAVIS F D. Perceived usefulness, perceived ease of use, and user acceptance of information technology[J]. MIS quarterly, 1989, 13(3): 319.
[19]
ROGERS E M, SCHUSTER S. Diffusion of innovations, 5th edition[M]. New York: Free Press, 2003.
[20]
李琪, 殷猛, 孙乔. 我国消费者支付宝钱包使用意向研究: 基于TAM和IDT理论[J]. 大连理工大学学报(社会科学版), 2018, 39(1): 23-29.
LI Q, YIN M, SUN Q. Consumers' intention of using mobile alipay based on the TAM and IDT models[J]. Journal of Dalian University of technology (social sciences), 2018, 39(1): 23-29.
[21]
姚云浩, 栾维新. 基于TAM-IDT模型的游艇旅游消费行为意向影响因素[J]. 旅游学刊, 2019, 34(2): 60-71.
YAO Y H, LUAN W X. Factors influencing yacht tourism consumption behavior based on the TAM-IDT model[J]. Tourism tribune, 2019, 34(2): 60-71.
[22]
周沛, 马静, 徐晓林. 移动电子政务公众采纳影响因素的实证研究[J]. 图书情报工作, 2012, 56(5): 134-138.
ZHOU P, MA J, XU X L. Empirical study on factors influencing the public adoption of mobile E-government[J]. Library and information service, 2012, 56(5): 134-138.
[23]
郭高晶, 张欣欣, 胡广伟. 公务员数字胜任力: 概念内涵、分析框架及评价指标体系构建[J]. 科普研究, 2024, 19(5): 14-24, 101.
GUO G J, ZHANG X X, HU G W. Digital competency of civil servants: Conceptual connotation, analytical framework, and evaluation index system[J]. Studies on science popularization, 2024, 19(5): 14-24, 101.
[1] SUN Lijuan. Exploring the Transition of Public Librarians to "Prompt Librarians" from the Perspective of New Quality Productive Forces [J]. Journal of library and information science in agriculture, 2025, 37(1): 17-32.
[2] Fan YUAN, Jia LI. Opportunities, Challenges, and Future Directions for Generative Artificial Intelligence in Library Information Literacy Education: A Scoping Review [J]. Journal of library and information science in agriculture, 2024, 36(9): 44-57.
[3] Dan WU, Xinjue SUN. Exploring Human-centered AI Literacy Education: Interpretation and Insights from UNESCO's AI Competency Framework for Teachers and Students [J]. Journal of library and information science in agriculture, 2024, 36(8): 4-19.
[4] Baiyang LI, Rong SUN. Construction of an AI Literacy General Education Curriculum Based on "Knowledge-Skills" Navigation [J]. Journal of library and information science in agriculture, 2024, 36(8): 34-42.
[5] Shuyi WANG, Wen ZENG, Weishi ZHANG, Junjie LI. Addressing the Knowledge Worker AI Literacy Gap with AI Technology [J]. Journal of library and information science in agriculture, 2024, 36(8): 20-33.
[6] Qiong LIU, Xing LIU, Guifeng LIU. Framework of AI Literacy for Multi-role Capabilities in Future Education: Based on Typical Cases of "AI + Higher Education" Application Scenarios [J]. Journal of library and information science in agriculture, 2024, 36(8): 43-55.
[7] LUO Guofeng, LIU Qingsheng. Application Scene and Practice of ChatGPT Empowering Information Literacy Education [J]. Journal of library and information science in agriculture, 2024, 36(4): 91-101.
[8] Yuhong CUI, Jintao ZHAO. AIGC Using Behavior Analysis from the Perspective of Artificial Intelligence Literacy [J]. Journal of library and information science in agriculture, 2024, 36(11): 20-32.
[9] WANG Hui. The Influence of Knowledge Service Ability on the User's Intention of Using the Knowledge Service Platform Provided by University Libraries [J]. Journal of library and information science in agriculture, 2021, 33(9): 64-71.
[10] ZENG Yao. Factors Affecting the Acceptance of Mobile Service APP Users in University Library: A Study Based on Technology Adoption Model [J]. Journal of library and information science in agriculture, 2018, 30(6): 53-56.
[11] HE Shuang. Empirical Study on the User loyalty of Digital Library [J]. Journal of library and information science in agriculture, 2018, 30(5): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!