Journal of Library and Information Science in Agriculture ›› 2022, Vol. 34 ›› Issue (8): 4-18.doi: 10.13998/j.cnki.issn1002-1248.22-0101
HOU Xiangying1, CUI Yunpeng2,*, LIU Juan2
CLC Number:
[1] CRICK F.Central dogma of molecular biology[J]. Nature, 1970, 227(5258): 561-563. [2] WAINBERG M, SINNOTT-ARMSTRONG N, MANCUSO N, et al.Opportunities and challenges for transcriptome-wide association studies[J]. Nature genetics, 2019, 51(4): 592-599. [3] ERASLAN G, AVSEC Z, GAGNEUR J.Theis FJ deep learning: New computational modelling techniques for genomics[J]. Nature reviews genetics, 2019, 20(7): 389-403. [4] XU C, JACKSON S A.Machine learning and complex biological data[J]. Genome biology, 2019, 20(1): 1-4. [5] LAI X, STIGLIANI A, VACHON G, et al.Building transcription factor binding site models to understand gene regulation in plants[J]. Molecular plant, 2019, 12(6): 743-763. [6] ZAMPIERI G, VIJAYAKUMAR S, YANESKE E, et al.Machine and deep learning meet genome-scale metabolic modeling[J]. PLoS computational biology, 2019, 15(7): E1007084. [7] WANG H, CIMEN E, SINGH N, et al.Deep learning for plant genomics and crop improvement[J]. Current opinion in plant biology, 2020, 54: 34-41. [8] DELONG A, WEIRAUCH M T, et al.Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning[J]. Nature biotechnology, 2015, 33(8): 831-838. [9] ZHOU J, TROYANSKAYA O G.Predicting effects of noncoding variants with deep learning -Based sequence model[J]. Nature methods, 2015, 12(10): 931-934. [10] CHING T, HIMMELSTEIN D S, BEAULIEU-JONES B K, et al. Opportunities and obstacles for deep learning in biology and medicine[J]. Journal of the royal society interface, 2018, 15(141): 20170387. [11] WANG M, TAI C, E W, et al. DeFine: Deep convolutional neural networks accurately quantify intensities of transcription factor - DNA binding and facilitate evaluation of functional non-coding variants[J]. Nucleic acids research, 2018, 46(11): E69-E69. [12] GREENSIDE P, SHIMKO T, FORDYCE P, et al.Discovering epistatic feature interactions from neural network models of regulatory DNA sequences[J]. Bioinformatics, 2018, 34(17): i629-i637. [13] QIN Q, FENG J.Imputation for transcription factor binding predictions based on deep learning[J]. PLoS computational biology, 2017, 13(2): E1005403 [14] KELLEY D R, RESHEF Y A, BILESCHI M, et al.Sequential regulatory activity prediction across chromosomes with convolutional neural networks[J]. Genome research, 2018, 28(5): 739-750. [15] SCHREIBER J, LIBBRECHT M, BILMES J, et al.Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture[J]. BioRxiv, 2017: 103614. [16] ZENG H, GIFFORD D K.Predicting the impact of non-coding variants on DNA methylation[J]. Nucleic acids research, 2017, 45(11): E99. [17] ANGERMUELLER C, LEE H J, REIK W, et al.DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning[J]. Genome biology, 2017, 18(1): 1-13. [18] ZHOU J, THEESFELD C L, YAO K, et al.Deep learning sequence - Based AB initio prediction of variant effects on expression and disease risk[J]. Nature genetics, 2018, 50(8): 1171-1179. [19] PAN X, SHEN H B.RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach[J]. BMC bioinformatics, 2017, 18(1): 1-14. [20] KIM H K, MIN S, SONG M, et al.Deep learning improves predic-tion of CRISPR-Cpf1 guide RNA activity[J]. Nature biotechnology, 2018, 36(3): 239-241. [21] ZHANG Y, AN L, XU J, et al.Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus[J]. Nature communica-tions, 2018, 9(1): 1-9. [22] LUO R, SEDLAZECK F J, LAM T W, et al.Clairvoyante: A multi-task convolutional deep neural network for variant calling in single molecule sequencing[J]. BioRxiv, 2018: 310458. [23] PAN X, RIJNBEEK P, YAN J, et al.Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks[J]. BMC genomics, 2018, 19(1): 1-11. [24] QUANG D, XIE X.DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences[J]. Nucleic acids research, 2016, 44(11): E107. [25] LEE B, BAEK J, PARK S, et al.DeepTarget: End-to-end learning framework for microRNA target prediction using deep recurrent neural networks[C]. Proceedings of the 7th ACM international conference on bioinformatics, computational biology, and health informatics, 2016: 434-442. [26] PARK S, MIN S, CHOI H, et al. DeepMiRGene: Deep neural network based precursor microrna prediction[J]. ArXiv preprint arxiv:1605.00017, 2016. [27] SHEN Z, BAO W, HUANG D S.Recurrent neural network for predicting transcription factor binding sites[J]. Scientific reports, 2018, 8(1): 1-10. [28] KELLEY D R, SNOEK J, RINN J L.Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks[J]. Genome research, 2016, 26(7): 990-999. [29] SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks: Visualising image classification models and saliency maps[J]. ArXiv preprint arxiv:1312.6034, 2013. [30] SHRIKUMAR A, GREENSIDE P, SHCHERBINA A, et al. Not just a black box: Learning important features through propagating activation differences[J]. ArXiv preprint arxiv:1605.01713, 2016. [31] SUNDARARAJAN M, TALY A, YAN Q.Axiomatic attribution for deep networks[C]. International conference on machine learning, PMLR, 2017: 3319-3328. [32] MA J, YU M K, FONG S, et al.Using deep learning to model the hierarchical structure and function of a cell[J]. Nature methods, 2018, 15(4): 290-298. [33] ZITNIK M, LESKOVEC J.Predicting multicellular function through multi-layer tissue networks[J]. Bioinformatics, 2017, 33(14): i190-i198. [34] ZITNIK M, AGRAWAL M, LESKOVEC J.Modeling polypharmacy side effects with graph convolutional networks[J]. Bioinformatics, 2018, 34(13): i457-i466. [35] KEARNES S, MCCLOSKEY K, BERNDL M, et al.Molecular graph convolutions: Moving beyond fingerprints[J]. Journal of computer-aided molecular design, 2016, 30(8): 595-608. [36] DUTIL F, COHEN J P, WEISS M, et al. Towards gene expression convolutions using gene interaction graphs[J]. ArXiv preprint arxiv:1806.06975, 2018. [37] KELLEY D R.Cross-species regulatory sequence activity prediction[J]. PLoS computational biology, 2020, 16(7): E1008050. [38] ZHANG Z, PARK C Y, THEESFELD C L, et al.An automated framework for efficiently designing deep convolutional neural networks in genomics[J]. Nature machine intelligence, 2021, 3(5): 392-400. [39] TRAN N H, ZHANG X, XIN L, et al.De novo peptide sequencing by deep learning[J]. Proceedings of the national academy of sci-ences, 2017, 114(31): 8247-8252. [40] YANG H, CHI H, ZENG W F, et al.PNovo 3: Precise de novo peptide sequencing using a learning-to-rank framework[J]. Bioinformatics, 2019, 35(14): i183-i190. [41] GESSULAT S, SCHMIDT T, ZOLG D P, et al.Prosit: Proteome-wide prediction of peptide tandem mass spectra by deep learning[J]. Nature methods, 2019, 16(6): 509-518. [42] MIRABELLO C, WALLNER B.RawMSA: Proper deep learning makes protein sequence profiles and feature extraction obsolete[J]. Biorxiv, 2018: 394437. [43] HASHEMIFAR S, NEYSHABUR B, KHAN A A, et al.Predicting protein - Protein interactions through sequence-based deep learning[J]. Bioinformatics, 2018, 34(17): i802-i810. [44] ZHANG D, KABUKA M.Multimodal deep representation learning for protein interaction identification and protein family classification[J]. BMC bioinformatics, 2019, 20(16): 1-14. [45] LONGWELL S, SHIMKO T.Res2Vec: Amino acid vector embeddings from 3D-protein structure[J]. THRESHOLD, 30(22): 344. [46] XU W, GAO Y, WANG Y, et al.Protein╞protein interaction prediction based on ordinal regression and recurrent convolutional neural networks[J]. BMC bioinformatics, 2021, 22(6): 1-21. [47] SENIOR A W, EVANS R, JUMPER J, et al.Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710. [48] JUMPER J, EVANS R, PRITZEL A, et al.Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. [49] BAEK M, DIMAIO F, ANISHCHENKO I, et al.Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876. [50] TUNYASUVUNAKOOL K, ADLER J, WU Z, et al.Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596. [51] CHOWDHURY R, BOUATTA N, BISWAS S, et al.Single-sequence protein structure prediction using language models from deep learning[J]. BioRxiv, 2021. [52] RODRíGUEZ-LEAL D, LEMMON Z H, MAN J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480, e8. [53] GUPTA A, ZOU J. Feedback GAN (FBGAN) for DNA: A novel feedback-loop architecture for optimizing protein functions[J]. ArXiv preprint arxiv:1804.01694, 2018. [54] LOPEZ R, REGIER J, COLE M B, et al.Deep generative modeling for single-cell transcriptomics[J]. Nature methods, 2018, 15(12): 1053-1058. [55] M R, BEYAN O, ZAPPA A, et al. Deep learning-based clustering approaches for bioinformatics[J]. Briefings in bioinformatics, 2021, 22(1): 393-415. [56] XIE R, WEN J, QUITADAMO A, et al.A deep auto-encoder model for gene expression prediction[J]. BMC genomics, 2017, 18(9): 39-49. [57] DINCER A B, JANIZEK J D, LEE S I.Adversarial deconfounding autoencoder for learning robust gene expression embeddings[J]. Bioinformatics, 2020, 36(2): i573. [58] KILLORAN N, LEE L J, DELONG A, et al. Generating and designing DNA with deep generative models[J]. ArXiv preprint arxiv:1712.06148, 2017. [59] GHAHRAMANI A, WATT F M, LUSCOMBE N M.Generative adversarial networks simulate gene expression and predict perturbations in single cells[J]. BioRxiv, 2018: 262501. |
[1] | SHI Yunlai, CUI Yunpeng, DU Zhigang. A Classification Method of Agricultural News Text Based on BERT and Deep Active Learning [J]. Journal of Library and Information Science in Agriculture, 2022, 34(8): 19-29. |
[2] | HUANG Yichun. Research on the Development Trend of Crop Breeding in China from the Supply of Innovative Elements [J]. Journal of Library and Information Science in Agriculture, 2022, 34(5): 31-46. |
[3] | MAO Jin, CHEN Ziyang. A Deep Learning Based Approach to Structural Function Recognition of Scientific Literature Abstracts [J]. Journal of Library and Information Science in Agriculture, 2022, 34(3): 15-27. |
[4] | WAN Hao, ZHANG Fujun, LV Qianqian. The Validity of Peer Review Results of DEA Based Super Efficiency Projects [J]. Journal of Library and Information Science in Agriculture, 2022, 34(2): 88-101. |
[5] | ZHENG Guangchun, ZHANG Yuhao, YAN Hui. From Backburner to the Forefront: Review of the Application of Autoethnography in the Information Science Field [J]. Journal of Library and Information Science in Agriculture, 2022, 34(2): 40-47. |
[6] | ZHANG Min. Overseas Copyright Literacy Research: Origins, Progress and Advances [J]. Journal of Library and Information Science in Agriculture, 2021, 33(9): 83-92. |
[7] | ZHOU Zhenguo. Data Governance Research from the Perspective of Governance Framework [J]. Journal of Library and Information Science in Agriculture, 2020, 32(7): 57-62. |
[8] | LYU Lucheng, HAN Tao. Artificial Intelligence Empowers Library and Information Service ——Review of Forums about Information Technology for Library 2019 [J]. Journal of Library and Information Science in Agriculture, 2020, 32(5): 13-18. |
[9] | LIN Hai, GU Tinghua, WU Yubing. Development Context and Characteristics of Social Commerce: Review and Prospect Based on Visualization Technology [J]. Journal of Library and Information Science in Agriculture, 2020, 32(5): 31-44. |
[10] | CHAI Miaoling, HUANG Lin, REN Yunyue. A Review of Construction of Major Agricultural Open Scientific Data Resources [J]. Journal of Library and Information Science in Agriculture, 2020, 32(10): 25-34. |
[11] | CHAI Jiaqi, CHEN Shiji. Review on Paper Novelty Measurement [J]. Journal of Library and Information Science in Agriculture, 2020, 32(10): 56-61. |
[12] | WANG Xuejing. Research on Intelligent Service Mode of Digital Library Based on Deep Learning Technology [J]. , 2018, 30(9): 150-153. |
[13] | ZHAO Limei, TAO Yi. Empirical Study on Impact Factors of Online Reviews Usefulness [J]. , 2018, 30(7): 14-17. |
[14] | HUO Zhenxiang, QU Lichun, LI Xiaoping. Resisting Measures and Thinking to Academic Misconduct from the Perspective of Scientific Journal Editor [J]. , 2018, 30(7): 137-140. |
[15] | Zhou Rong, Yu Dengke, Liu Xianqiu. Literature Review of Knowledge Sharing and Collaborative Decision-making in Demand Supply Chain of Agricultural Products [J]. , 2018, 30(2): 51-58. |
|