农业图书情报学报 ›› 2025, Vol. 37 ›› Issue (5): 58-71.doi: 10.13998/j.cnki.issn1002-1248.25-0297

• 研究论文 • 上一篇    下一篇

生成式人工智能驱动公共图书馆资源发现:基于动态评价模型的服务优化研究

张丽1, 王博2,3, 张琪晶4   

  1. 1.西安图书馆,西安 710024
    2.西安交通大学 新闻与新媒体学院,西安 710049
    3.西安财经大学 图书馆,西安 710100
    4.西安财经大学 公共管理学院,西安 710100
  • 收稿日期:2025-04-07 出版日期:2025-05-05 发布日期:2025-08-10
  • 作者简介:张丽(1978- ),女,副研究馆员,西安图书馆,研究方向为知识服务与图书馆建设
    王博(1997- ),男,博士在读,研究方向为知识服务与传播。井水(1985-),男,研究馆员,西安财经大学图书馆,研究方向公共文化服务与图书馆建设
    张琪晶(2001-),女,硕士研究生在读,研究方向公共文化服务
  • 基金资助:
    陕西省哲学社会科学研究专项年度项目“新质生产力驱动陕西省公共数字文化服务高质量发展研究”(2025YB0162);西安财经大学高等教育改革发展研究项目“提升信息素养支撑财经类高校人才培养的 路径研究 ”(2023GJ08)

Generative AI-Driven Resource Discovery in Public Libraries: Service Optimization Based on a Dynamic Evaluation Model

ZHANG Li1, WANG Bo2,3, JING Shui4   

  1. 1.Xi'an Public Library, Xi'an 710024
    2.School of Journalism and New Media, Xi'an Jiaotong University, Xi'an 710049
    3.Library of University of Finance and Economics, Xi 'an 710100
    4.School of Public Administration, University of Finance and Economics, Xi 'an 710100
  • Received:2025-04-07 Online:2025-05-05 Published:2025-08-10

摘要:

[目的/意义] 生成式人工智能技术正在重塑图书馆资源发现服务的底层逻辑,但传统静态评价体系难以有效衡量其动态效能与优化需求。 [方法/过程] 从系统性、认知适配性与服务交互性3个维度解构AI驱动服务的核心特征,建立涵盖物理环境、技术架构、内容组织、用户交互与创新能力的多层次指标体系。采用层次分析法与熵权法融合的主客观混合赋权方法,确定语义网络深度、认知引导效率等关键指标权重,形成动态响应的评价框架。 [结果/结论] 基于实证结果进一步提出多模态交互优化、自适应差异化、分层协同推进、内容智能重组等策略,强调需通过认知负荷缓解设计、用户画像构建、知识图谱重组与分层协同机制提升服务效能。该模型为公共图书馆AI技术应用提供了兼顾技术性能与知识服务效能的动态评估工具,助力智慧图书馆建设战略的精准实施。

关键词: 生成式人工智能, 资源发现服务, 动态评价模型, 智慧图书馆, 大语言模型

Abstract:

[Purpose/Significance] As generative artificial intelligence (AI) transforms library services, existing evaluation systems fail to capture dynamic characteristics of AI-driven resource discovery. This study develops a dynamic evaluation framework for public libraries' AI-enhanced services, addressing the gap between technological innovation and service assessment. [Method/Process] The research employed a mixed-methods approach to develop and verify a multi-dimensional evaluation framework based on Knowledge Organization Systems (KOS) theory. The framework comprises five primary dimensions: physical environment, technical architecture, content organization, user interaction, and innovation capability-operationalized through fifteen secondary indicators. Each indicator was carefully designed to capture AI-specific capabilities, including cognitive guidance efficiency, multimodal interaction precision, semantic network depth, and generation-enhanced utilization rate. A sophisticated hybrid weighting methodology was implemented, integrating subjective and objective approaches. For subjective weights, the Analytic Hierarchy Process was employed with 30 domain experts constructing pairwise comparison matrices using standardized scaling methods. Geometric mean aggregation was applied to synthesize individual judgments, with consistency ratios maintained below the threshold to ensure logical coherence. For objective weights, the entropy method analyzed actual evaluation data variance, with greater variance indicating higher discriminatory power. The final weights were derived through multiplicative synthesis combining both approaches. The empirical validation study involved collecting 492 valid questionnaires from 14 strategically selected public libraries representing different stages of AI implementation between September and November 2024: one municipal library with comprehensive AI deployment, 11 district libraries with partial implementation, and 2 county libraries in early adoption phases. The questionnaire utilized a five-point Likert scale to assess real-time service performance across multiple scenarios. Statistical analysis employed fuzzy comprehensive evaluation to handle uncertainty in subjective assessments, structural equation modeling to validate construct relationships, and latent class analysis to identify distinct user interaction patterns. The framework demonstrated high reliability with Cronbach's alpha reaching 0.845 and strong construct validity with KMO value of 0.873. [Results/Conclusions] Content organization emerged as the most critical dimension with a combined weight of 0.302 2, while semantic network depth, cognitive guidance efficiency, and cross-media consistency ranked as top secondary indicators with weights of 0.090 3, 0.086 1, and 0.084 7 respectively. Performance evaluation revealed content organization scoring 74.873 points versus user interaction at 68.040 points, highlighting the gap between technical capabilities and user experience. Significant differences existed across library levels, with municipal libraries outperforming county libraries by over one point in technical architecture and semantic network depth. Four distinct user patterns emerged: technology-oriented, content-immersive, efficiency-focused, and assistance-dependent. Each requires a tailored service approach. The study proposes the following optimization strategies: multimodal interaction frameworks, adaptive user profiling, hierarchical collaboration mechanisms, and knowledge graph-based content reorganization.

Key words: generative artificial intelligence, resource discovery services, dynamic evaluation model, smart library, large language models

中图分类号:  G251

引用本文

张丽, 王博, 张琪晶. 生成式人工智能驱动公共图书馆资源发现:基于动态评价模型的服务优化研究[J]. 农业图书情报学报, 2025, 37(5): 58-71.

ZHANG Li, WANG Bo, JING Shui. Generative AI-Driven Resource Discovery in Public Libraries: Service Optimization Based on a Dynamic Evaluation Model[J]. Journal of library and information science in agriculture, 2025, 37(5): 58-71.