农业图书情报学报 ›› 2025, Vol. 37 ›› Issue (10): 96-111.doi: 10.13998/j.cnki.issn1002-1248.25-0580

• 应用实践 • 上一篇    

AI时代背景下高校图书馆资源建设效能评估体系构建——北京理工大学图书馆的实践探索

贺聪1, 杨静1,2, 肖雄3(), 孙稳稳1, 李成刚4   

  1. 1.北京理工大学 图书馆,北京 100081
    2.北京理工大学 信息与电子学院,北京 100081
    3.北京理工大学 党委巡视办公室,北京 100081
    4.北京理工大学 党政办公室,北京 100081
  • 收稿日期:2025-08-28 出版日期:2025-10-05 发布日期:2025-12-16
  • 通讯作者: 肖雄 E-mail:6120104073@bit.edu.cn
  • 作者简介:贺聪,博士,副研究馆员,北京理工大学图书馆,馆长助理,研究方向为信息资源建设
    杨静,博士,研究员,北京理工大学图书馆,馆长,北京理工大学信息与电子学院,党委书记,研究方向为高等教育资源管理
    孙稳稳,硕士,助理馆员,北京理工大学图书馆,资源建设部副主任,研究方向为信息资源评估
    李成刚,硕士,助理研究员,北京理工大学党政办公室,校党委书记秘书,研究方向为高等教育管理
  • 基金资助:
    国家重点研发计划项目“知识赋能的多空间协同智慧学习关键技术研究与应用示范”(2023YFC3305700);北京理工大学图书馆研究项目“开放科学时代人工智能驱动的高校图书馆信息资源建设模式研究”(2025002)

Construction of Efficiency Evaluation System for University Library Resource Construction under the Background of AI Era: Practical Exploration of Beijing Institute of Technology Library

HE Cong1, YANG Jing1,2, XIAO Xiong3(), SUN Wenwen1, LI Chenggang4   

  1. 1.Library of Beijing Institute of Technology, Beijing 100081
    2.School of Information and Electronics of BIT, Beijing 100081
    3.Party Committee Inspection of BIT, Beijing 100081
    4.BIT Office, Beijing 100081
  • Received:2025-08-28 Online:2025-10-05 Published:2025-12-16
  • Contact: XIAO Xiong E-mail:6120104073@bit.edu.cn

摘要:

【目的/意义】 在人工智能(AI)技术深度重构高等教育生态背景下,高校图书馆资源建设正经历从“资源供给导向”向“效能驱动发展”范式转型,探索构建直指核心效益的评估体系是高校图书馆在AI时代生存和发展的关键。 【方法/过程】 系统梳理北京理工大学图书馆“十四五”以来在资源建设效能评估工作中的探索实践,通过专业馆员队伍、全流程评估模型、AI赋能管理服务平台、深度调研对标分析及科学论证决策,构筑起立体化的信息资源建设效能评估体系。 【结果/结论】 实践表明,该体系实现了图书馆资源保障精准度显著提高、资源利用效益大幅上涨、科研支撑能力显著增强以及服务满意度跨越式提升等建设成效。文章就评估体系面临挑战、演进方向与协同发展等方面进行思考展望,以期为高校图书馆资源建设的精准化、科学化、智能化发展提供理论借鉴和实践参考。

关键词: 高校图书馆, 资源建设, 效能评估, 人工智能

Abstract:

[Purpose/Significance] Artificial intelligence is reshaping the landscape of higher education, driving the transformation of university library resource development from a "resource supply-oriented" model to an "efficiency-driven" one. Traditional evaluation systems, constrained by single-dimensional indicators and manual data collection, fail to meet the demands of intelligent transformation. This study takes the Library of Beijing Institute of Technology (BIT), a research university library, as a case study to construct a three-dimensional efficiency evaluation system for resource development. Unlike previous studies that focus on theoretical model construction, this research integrates the practical experience of the BIT Library since 2021, combining team building, technological empowerment and institutional design to form an implementable evaluation system, which provides replicable references for the intelligent development of resource construction in domestic university libraries. [Method/Process] This study adopts a mixed research method combining case study and quantitative-qualitative analysis, with theoretical foundations in library science theories such as resource life cycle management and interdisciplinary theories including artificial intelligence application. The empirical data are derived from the operational data of the BIT Library from 2021 to 2025 (such as procurement records and user behavior data). The construction of the evaluation system consists of five links: 1) We establish a hierarchical training system covering all librarians, offering expert lectures and implementing the pairing model of "data analyst + subject librarian"; 2) We use the analytic hierarchy process (AHP) to determine indicator weights, adding the "interdisciplinary adaptability" indicator for emerging fields, and building a full-process evaluation model; 3) We construct an AI-empowered platform integrating multi-source data, which significantly shortens the duration of manual data processing; 4) We carry out in-depth research in collaboration with colleges and research teams, and conduct benchmarking analysis with top university libraries; 5) We establish a scientific decision-making mechanism linking evaluation data with the University Library Committee and various colleges of the university. [Results/Conclusions] The application of this system in the BIT Library has achieved remarkable results: the accuracy of library resource guarantee has been significantly improved, the efficiency of resource utilization has risen substantially, the capacity for scientific research support has been notably enhanced, and the service satisfaction has undergone a leapfrog improvement. However, the evaluation system still has limitations such as data privacy risks, insufficient AI literacy of some librarians, and lack of inter-library collaboration. Suggestions for targeted action include adopting federated learning technology to protect data privacy, carrying out hierarchical AI training, and establishing a regional evaluation alliance. Future research will explore the specific application of generative artificial intelligence in the evaluation system and establish a dynamic adjustment mechanism for indicators adapted to technological and disciplinary development.

Key words: university library, resource construction, efficiency evaluation, artificial intelligence

中图分类号:  G253

引用本文

贺聪, 杨静, 肖雄, 孙稳稳, 李成刚. AI时代背景下高校图书馆资源建设效能评估体系构建——北京理工大学图书馆的实践探索[J]. 农业图书情报学报, 2025, 37(10): 96-111.

HE Cong, YANG Jing, XIAO Xiong, SUN Wenwen, LI Chenggang. Construction of Efficiency Evaluation System for University Library Resource Construction under the Background of AI Era: Practical Exploration of Beijing Institute of Technology Library[J]. Journal of library and information science in agriculture, 2025, 37(10): 96-111.