农业图书情报学报 ›› 2021, Vol. 33 ›› Issue (4): 58-67.doi: 10.13998/j.cnki.issn1002-1248.20-0670

所属专题: 农业知识服务

• 研究论文 • 上一篇    下一篇

基于ResNet-50深度卷积网络的果树病害智能诊断模型研究

金瑛1, 叶飒2,*, 李洪磊1   

  1. 1.辽宁师范大学 大数据与商务智能实验室,大连 116029;
    2.中国农业科学院 农业信息研究所,北京 100081
  • 收稿日期:2020-07-28 出版日期:2021-04-05 发布日期:2021-04-30
  • 通讯作者: *叶飒(ORCID:0000-0002-1339-9060),女,馆员,中国农业科学院农业信息研究所,研究方向为数值分析与数据挖掘。Email:yesa@caas.cn
  • 作者简介:金瑛(ORCID:0000-0001-7973-3693),女,硕士研究生,辽宁师范大学管理科学与工程,研究方向为系统建模与优化。李洪磊(ORCID:0000-0002-7080-873X),男,博士,特聘教授,硕士研究生导师,辽宁师范大学,研究方向为系统建模与仿真、智能信息处理
  • 基金资助:
    中国工程科技知识中心建设项目“农业专业知识服务系统”(CKCEST-2020-1-20)

The Intelligent Diagnosis Model of Fruit Tree Disease Based on ResNet-50

JIN Ying1, YE Sa2,*, LI Honglei1   

  1. 1. School of Government Management, Liaoning Normal University, Dalian 116029;
    2. Institute of Agricultural Information, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-07-28 Online:2021-04-05 Published:2021-04-30

摘要: [目的/意义]果树病害危及农业生产安全,运用人工智能技术帮助果农及时准确地识别果树病害对保障农业安全生产具有重要意义。[方法/过程]采用10 000张果树叶片病斑图像数据集,通过旋转、污化、增噪、切割等图像增强手段,提高样本图像的多样性;使用ResNet-50深度卷积网络模型,进行机器学习,获得果树病害识别模型,并基于此模型开发了应用软件提供在线诊断服务。[结果/结论]实验结果表明:该模型对4种果树病害的平均识别率达到92.9%,和相关研究成果相比具有较好的诊断效果。

关键词: ResNet-50, 图像识别, 果树疾病, 智能诊断

Abstract: [Purpose/Significance] Fruit tree diseases endanger the safety of agricultural production, and the use of artificial intelligence technologies to help fruit growers identify fruit tree diseases in a timely and accurate manner is of great significance to ensure safe agricultural production. [Method/Process] Using 10 000 fruit tree leaf diseased spots image data sets, through image enhancement methods such as rotation, pollution, noise enhancement, and cutting to improve the diversity of sample images; using the ResNet-50 deep convolutional network model to perform machine learning to obtain the fruit tree diseases identification model, and develop application software based on this model to provide online diagnostic services. [Results/Conclusions] The experimental results show that the average recognition rate of the four fruit tree diseases reached 92.9%, which has a better diagnostic effect compared with related research results.

Key words: ResNet-50, image recognition, fruit tree disease, intelligent diagnosis

中图分类号: 

  • G249.2

引用本文

金瑛, 叶飒, 李洪磊. 基于ResNet-50深度卷积网络的果树病害智能诊断模型研究[J]. 农业图书情报学报, 2021, 33(4): 58-67.

JIN Ying, YE Sa, LI Honglei. The Intelligent Diagnosis Model of Fruit Tree Disease Based on ResNet-50[J]. Journal of Library and Information Science in Agriculture, 2021, 33(4): 58-67.