中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (6): 20-36.doi: 10.13998/j.cnki.issn1002-1248.25-0322

   

Privacy Risk of Government Open Data Management from the Storytelling Perspective of the User-Cognitive Connection

GENG Ruili1,2,3, WANG Yifan4, LI Sentao1(), WEI Qi1   

  1. 1.School of Information Management, Zhengzhou University, Zhengzhou 450001
    2.Zhengzhou Data Science Research Center, Zhengzhou 450001
    3.Data Governance Research Center of Henan Province, Zhengzhou 450001
    4.China Special Vehicle Research Institute, Jingmen 448035
  • Received:2025-04-17 Online:2025-06-05 Published:2025-09-16
  • Contact: LI Sentao E-mail:lisentao99@163.com

Abstract:

[Purpose/Significance] Open government data (OGD) has increasingly adopted storytelling elements to improve public engagement and enhance user comprehension. Although this narrative approach enhances data accessibility and cognitive resonance, it raises significant privacy concerns. Specifically, storytelling may activate users' cognitive schemas, enabling them to infer sensitive personal information even from anonymized datasets. This dual effect between data usefulness and privacy risk is becoming an increasing challenge for data providers and policymakers. In this study, we aim to explore how storytelling in OGD affects users' cognitive reasoning processes and leads to privacy risks. Our work innovatively combines cognitive psychology, information science, and privacy risk assessment. This interdisciplinary approach offers a new perspective on how data narratives shape inference behavior. Distinct from existing research, this paper focuses on how cognitive mechanisms driven by storytelling influence users' perception and extraction of private information. This research holds practical significance for designing privacy-aware data disclosure strategies that strike a balance between openness and protection. [Method/Process] In order to analyze the cognitive mechanisms underlying privacy risk, we adopted a mixed-methods research design grounded in relevance theory, schema theory, and the S-O-R model. We first constructed a user cognitive connection model that conceptualized how narrative stimuli activated cognitive processing and led to privacy-related inferences. Based on this model, we developed a privacy risk assessment index comprising three primary dimensions: data association and reasoning, data processing and decoding, and implicit suggestion and implication. We then conducted a controlled experiment involving 236 participants, who were randomly divided into a storytelling group and a non-storytelling group. To analyze the collected data, we used the CRITIC method to assign objective weights to evaluation indicators and applied a fuzzy comprehensive evaluation method to quantify and compare privacy risks across groups. [Results/Conclusions] Our results demonstrated that storytelling significantly heightened users' ability to infer sensitive personal information. The average inference score in the storytelling group was significantly higher than that in the non-storytelling group (p<0.05), and the comprehensive privacy risk level was rated as "medium risk" compared to the non-storytelling group's "low risk." Across all three risk dimensions, the storytelling group consistently exhibited greater cognitive engagement and higher potential for privacy exposure. These findings suggested that while storytelling enhanced user understanding, it also increased the risk of privacy violations. As such, we recommended that government data platforms adopt non-storytelling or partially abstracted data presentation strategies to reduce risk while preserving clarity. From a policy perspective, we advocated for the integration of intelligent narrative-generation algorithms and privacy-by-design principles to protect users' information. Although limited by sample size and data diversity, this study offered a foundation for future research into the cognitive underpinnings of privacy risk. Further work may explore other forms of storytelling, demographic influences on inference behavior.

Key words: government open data, situational narrative, user-perceived connection, privacy risk, control experiment

CLC Number: 

  • G252

Fig.1

Users' cognitive connectivity process"

Table 1

Description and evaluation contents of indicators"

一级指标二级指标指标描述参考来源
数据关联和推理关联推理程度我可以通过实验材料中的描述将其中的部分情节或事件进行关联并加以推理[14]
隐私泄露可能性我认为对实验材料进行关联推理后,有可能泄露自然人的个人敏感信息作者自拟
认知联接复杂度我认为通过实验材料推理出其他相关个人敏感信息并不困难
推理准确性我可以准确推理出实验材料中个人敏感信息
推理速度我可以在短时间内推理出材料中隐含的相关个人敏感信息
数据加工和解码敏感信息获取我可以识别出实验材料中隐含的个人敏感信息[27]
解码过程复杂度我认为识别出实验材料中隐含的个人敏感信息并不困难[49]
加工过程中隐私暴露我在处理实验材料时发现,其中隐含的个人敏感信息能被提取到
隐私信息提取速度我可以在短时间内提取到实验材料中的个人隐私信息作者自拟
加工后信息关联度我认为实验材料与个人隐私信息的关联度高
信息暗示和隐含暗示识别能力我认为实验材料隐含了其他的敏感信息[33]
隐私揭示程度我可以通过实验材料的隐含信息揭示相关个人隐私信息
隐含信息提取准确性我可以准确地提取隐含的其他相关个人敏感信息
信息加工的隐私保护措施我认为实验材料没有采取隐私保护措施
信息敏感性我认为实验材料中的某些信息具备隐私敏感性,易与个人隐私信息关联[26]

Table 2

Privacy risk level"

评估值风险等级定义
0~0.2微弱风险风险发生后用户遭受轻微损失
0.2~0.4较低风险风险发生后用户遭受较低损失
0.4~0.6中等风险风险发生后用户遭受一般损失
0.6~0.8较高风险风险发生后用户遭受较高损失
0.8~1高危风险风险发生后用户遭受巨大损失

Table 3

Experimental grouping and demographic statistical characteristics"

项目类别实验组/人对照组/人总计/人
性别6362125
5556111
年龄18~25岁7673149
26~35岁303868
36~45岁10515
45岁以上224
学历高中及以下459
专科212647
本科554297
硕士344175
博士448
职业政府工作人员6713
教师、科研工作者8614
学生6869137
个体经营者369
其他333063

Table 4

Descriptive statistical analysis of the inference results score"

组别样本数均值最大值最小值标准偏差标准误差均值95%置信区间
下限上限
实验组1185.136821.1320.1044.9295.342
对照组1182.568510.9010.0832.4042.732
总计2363.852811.6420.1073.6424.061

Table5

Variance test of inference results score"

项目平方和自由度均方F显著性
组间389.0211389.021371.8770.000
组内244.7882341.046
总计633.809235

Table 6

Experimental results"

组别风险因素模糊综合评价结果隐私风险等级
对照组数据关联和推理(0.171,0.391,0.265,0.173,0.000)较低风险
数据加工和解码(0.133,0.352,0.345,0.170,0.000)较低风险
信息暗示和隐含(0.068,0.336,0.311,0.226,0.059)较低风险
实验组数据关联和推理(0.000,0.104,0.412,0.421,0.063)中等风险
数据加工和解码(0.000,0.047,0.306,0.501,0.146)中等风险
信息暗示和隐含(0.000,0.033,0.272,0.509,0.186)中等风险
[1] 复旦大学数字与移动治理实验室. 中国地方公共数据开放利用报告——省域(2024年度)[EB/OL]. [2025-04-17]. .
[2] 孙瑞英, 李杰茹. 我国政府数据开放平台个人隐私保护政策评价研究[J]. 图书情报工作, 2022, 66(12): 3-16.
SUN R Y, LI J R. Research on the evaluation of personal privacy protection policies of government data open platforms in China[J]. Library and information service, 2022, 66(12): 3-16.
[3] 罗飞, 孙远波. 叙事视角下的新冠肺炎疫情数据可视化设计[J]. 设计, 2022, 35(14): 76.
LUO F, SUN Y B. Data visualization design of covid-19 based on narrative theory[J]. Design, 2022, 35(14): 76.
[4] 朝乐门. 数据故事的内涵、生成及应用研究[J]. 中国图书馆学报, 2024, 50(3): 96-116.
CHAO L M. Data story: Definition, methods and applications[J]. Journal of library science in China, 2024, 50(3): 96-116.
[5] 周霞, 王萍, 李依凝, 等. 政府开放数据用户认知效果的比较实验研究[J]. 现代情报, 2022, 42(10): 48-57.
ZHOU X, WANG P, LI Y N, et al. Comparative experimental study on the cognitive effect of government open data users[J]. Journal of modern information, 2022, 42(10): 48-57.
[6] 张一丁. 新闻叙事理论视域下突发事件数据新闻报道的情感传递研究[D]. 沈阳: 辽宁大学, 2023.
ZHANG Y D. Research on emotional transmission of emergency data news reports from the perspective of news narrative theory[D]. Shenyang: Liaoning University, 2023.
[7] 侯雪林, 应峻, 宋士杰. 活动理论视角下疫情数据故事化的结构要素和过程探析[J]. 情报理论与实践, 2022, 45(8): 68-75.
HOU X L, YING J, SONG S J. Exploring the structural elements and procedure of epidemic data storytelling based on activity theory[J]. Information studies: Theory & application, 2022, 45(8): 68-75.
[8] 清华数据库实验室. 新型肺炎疫情可视化[EB/OL]. [2025-04-17]. .
[9] ROMERO-DOMÍNGUEZ L R. Capítulo 4. Información de calidad y periodismo de datos abiertos en la radiotelevisión pública española. Estudio de caso de DatosRTVE[J]. Espejo de monografías de comunicación social, 2025(33): 85-108.
[10] 陈昱彤, 丁家友. 数据叙事的运行模型与关键问题[J]. 图书馆论坛, 2023, 43(4): 109-119.
CHEN Y T, DING J Y. A study for operational model and key issues of data storytelling[J]. Library tribune, 2023, 43(4): 109-119.
[11] 赵红颖, 张卫东. 数字人文视角下的红色档案资源组织: 数据化、情境化与故事化[J]. 档案与建设, 2021(7): 33-36.
ZHAO H Y, ZHANG W D. Red archives resources organization from the perspective of digital humanities: Data fication, contextualization and storytelling[J]. Archives & construction, 2021(7): 33-36.
[12] 杜梦晓. 视觉传播视角下可视化新闻故事化报道研究: 以2019年全国两会报道为例[D]. 苏州: 苏州大学, 2020.
DU M X. Research on visual news story reporting of the two sessions from the perspective of visual communication: Take the report of the two sessions in 2019 as an Example[D]. Suzhou: Soochow University, 2020.
[13] 张艳丰, 王艺卓, 刘润宇, 等. 数据故事视角下公共数字文化服务用户认知图式模型构建研究[J]. 情报科学, 2024, 42(8): 86-95.
ZHANG Y F, WANG Y Z, LIU R Y, et al. Public digital cultural service user cognitive Schema model: From the perspective of data story[J]. Information science, 2024, 42(8): 86-95.
[14] 张莉曼, 吴鹏, 尹熙成, 等. 政民互动数据中公众诉求的故事化描述: 集成、重构与叙事[J]. 情报理论与实践, 2023, 46(4): 141-149.
ZHANG L M, WU P, YIN X C, et al. Storytelling description of public appeal in government-to-citizen interaction data: Integration, reconstruction and narration[J]. Information studies: Theory & application, 2023, 46(4): 141-149.
[15] 郝文强. 政府数据开放隐私风险识别机制研究[J]. 电子政务, 2021(3): 103-111.
HAO W Q. Research on risk identification mechanism of government data openness and privacy[J]. E-Government, 2021(3): 103-111.
[16] 刘逸敏. 基于访问目的的隐私数据访问控制机制研究[D]. 上海: 复旦大学, 2012.
LIU Y M. Research on privacy data access control mechanism based on access purpose[D]. Shanghai: Fudan University, 2012.
[17] 张嘉伟, 马建峰, 马卓, 等. 云计算中基于时间和隐私保护的可撤销可追踪的数据共享方案[J]. 通信学报, 2021, 42(10): 81-94.
ZHANG J W, MA J F, MA Z, et al. Time-based and privacy protection revocable and traceable data sharing scheme in cloud computing[J]. Journal on communications, 2021, 42(10): 81-94.
[18] 郭维嘉, 郭少友. 开放政府数据中的个人隐私风险类型及消解机制研究[J]. 河南科技, 2018, 37(4): 21-24.
GUO W J, GUO S Y. Types and resolution mechanism of personal privacy risks in open government data[J]. Henan science and technology, 2018, 37(4): 21-24.
[19] 陈美. 城市政府开放数据的隐私风险及其技术控制策略[J]. 图书馆建设, 2018(8): 16-21, 27.
CHEN M. Privacy risks and technical control strategy of open government data[J]. Library development, 2018(8): 16-21, 27.
[20] 牛冰倩. 政府数据开放隐私风险识别体系构建与应用研究[D]. 保定: 河北大学, 2023.
NIU B Q. Research on the construction and application of privacy risk identification system in government data openness[D]. Baoding: Hebei University, 2023.
[21] 陈美, 何祺. 开放政府数据的隐私风险关键影响因素识别[J]. 图书情报工作, 2023, 67(8): 40-49.
CHEN M, HE Q. Identification of key influencing factors of privacy risk of open government data[J]. Library and information service, 2023, 67(8): 40-49.
[22] 吴宁博, 李金燕, 杨帆, 等. 我国政府数据开放的隐私风险判定及其治理路径研究[J]. 情报杂志, 2023, 42(11): 192-198.
WU N B, LI J Y, YANG F, et al. Research on privacy risk judgment and governance path of government data openness in China[J]. Journal of intelligence, 2023, 42(11): 192-198.
[23] 晏燕, 王万军. 偏联系数隐私风险态势评估方法[J]. 计算机工程与应用, 2018, 54(10): 143-148.
YAN Y, WANG W J. Privacy risk situation assessment method based on partial connection numbers[J]. Computer engineering and applications, 2018, 54(10): 143-148.
[24] 刘丽娜. 政府数据开放隐私保护成熟度评估[D]. 兰州: 兰州大学, 2022.
LIU L N. Maturity assessment of privacy protection in government data openness[D]. Lanzhou: Lanzhou University, 2022.
[25] LI Y, YANG R, LU Y K. A privacy risk identification framework of open government data: A mixed-method study in China[J]. Government information quarterly, 2024, 41(1): 101916.
[26] 罗康, 彭长根, 谭伟杰, 等. 基于属性权重的隐私泄露风险评估方法[J]. 计算机技术与发展, 2022, 32(10): 82-87.
LUO K, PENG C G, TAN W J, et al. Privacy disclosure risk assessment method based on attribute weight[J]. Computer technology and development, 2022, 32(10): 82-87.
[27] HENRIKSEN-BULMER J, FAILY S, JEARY S. Privacy risk assessment in context: A meta-model based on contextual integrity[J]. Computers & security, 2019, 82: 270-283.
[28] SCHWEE J H, SANGOGBOYE F C, SALIM F D, et al. Tool-chain for supporting privacy risk assessments[C]//Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. Virtual Event Japan. ACM, 2020: 140-149.
[29] ALI-ELDIN A, ZUIDERWIJK A, JANSSEN M. A privacy risk assessment model for open data[M]//Business Modeling and Software Design. Cham: Springer International Publishing, 2018: 186-201.
[30] 田玥鑫. 基于PbD理论的政府数据开放中个人隐私问题研究[D]. 哈尔滨: 黑龙江大学, 2021.
TIAN Y X. Research on personal privacy issues in government data openness based on PbD theory[D]. Harbin: Helongjiang University, 2021.
[31] 赵需要, 彭靖. 政府数据开放中个人隐私的泄露风险与保护[J]. 信息安全研究, 2016, 2(9): 792-801.
ZHAO X Y, PENG J. Study on release risks and protecting strategies of privacy during government's open data[J]. Journal of information security research, 2016, 2(9): 792-801.
[32] 吴钟灿, 冯展畅. 政府数据开放隐私保护的多元主体共生模式与实现路径[J]. 湖南行政学院学报, 2024(1): 10-18.
WU Z C, FENG Z C. Multi-subject symbiosis model and pathway of privacy protection for open government data[J]. Journal of Hunan administration institute, 2024(1): 10-18.
[33] 黄平平, 刘文云, 孙志腾. 基于ISM-MICMAC模型的政府数据开放中个人隐私保护影响因素分析[J]. 情报理论与实践, 2022, 45(3): 65-71.
HUANG P P, LIU W Y, SUN Z T. Analysis of influencing factors of privacy protection in government data opening based on ISM-MICMAC model[J]. Information studies: Theory & application, 2022, 45(3): 65-71.
[34] 李瀛, 杨芮. 我国政府数据开放的隐私保护困境及管理框架研究[J]. 情报杂志, 2023, 42(1): 152-157.
LI Y, YANG R. Research on privacy protection dilemma and management framework of open government data in China[J]. Journal of intelligence, 2023, 42(1): 152-157.
[35] 陈美. 韩国开放政府数据的隐私风险控制研究[J]. 情报理论与实践, 2021, 44(8): 180-186, 111.
CHEN M. Open government data privacy risk control: The Korean experience[J]. Information studies: Theory & application, 2021, 44(8): 180-186, 111.
[36] 夏义堃. 政府数据治理的国际经验与启示[J]. 信息资源管理学报, 2018, 8(3): 64-72, 101.
XIA Y K. International experiences and implications on government data governance[J]. Journal of information resources management, 2018, 8(3): 64-72, 101.
[37] 杨巧云, 张彦菲, 李欣, 等. 政府开放数据个人隐私保护政策保障: 基于10个国家政策实践的内容分析[J]. 图书情报工作, 2024, 68(11): 56-71.
YANG Q Y, ZHANG Y F, LI X, et al. Personal privacy protection policy guarantee of government open data: Policy content analysis from ten countries[J]. Library and information service, 2024, 68(11): 56-71.
[38] 陈兰杰, 闻航. 基于区块链的开放政府数据个人隐私保护模型及实现机理研究[J]. 图书馆理论与实践, 2021(1): 67-72.
CHEN L J, WEN H. Research on personal privacy protection model of open government data based on blockchain and its implementation mechanism[J]. Library theory and practice, 2021(1): 67-72.
[39] 周鑫, 张静, 谢津, 等. 区块链赋能突发公共卫生事件开放数据隐私保护研究[J]. 现代情报, 2023, 43(1): 141-150.
ZHOU X, ZHANG J, XIE J, et al. Block chain empowerment privacy protection in data opening of public health emergencies[J]. Journal of modern information, 2023, 43(1): 141-150.
[40] MÜLLNER P, LEX E, SCHEDL M, et al. Differential privacy in collaborative filtering recommender systems: A review[J]. Frontiers in big data, 2023, 6: 1249997.
[41] ZHAO X D, PI D C, CHEN J F. Novel trajectory privacy-preserving method based on clustering using differential privacy[J]. Expert systems with applications, 2020, 149: 113241.
[42] PIAO C H, SHI Y J, YAN J Q, et al. Privacy-preserving governmental data publishing: A fog-computing-based differential privacy approach[J]. Future generation computer systems, 2019, 90: 158-174.
[43] 袁静, 周欣丽, 臧国全, 等. 政府开放数据隐私风险研究: 现状、特征及展望[J]. 图书情报知识, 2024, 41(4): 67-81.
YUAN J, ZHOU X L, ZANG G Q, et al. Research progress of the open government data privacy risk: Current status, characteristics and prospects[J]. Documentation, information & knowledge, 2024, 41(4): 67-81.
[44] 袁静, 张翼翔, 臧国全. 用户参与政府开放数据隐私风险治理行为的影响因素分析[J]. 图书情报工作, 2023, 67(11): 12-24.
YUAN J, ZHANG Y X, ZANG G Q. Analysis of factors influencing users' participation in privacy risk governance of open government data[J]. Library and information service, 2023, 67(11): 12-24.
[45] SPERBER D, WILSON D. Relevance: Communication and cognition[M]. Oxford: Black Well, 1986.
[46] CARBON C C, ALBRECHT S. Bartlett's Schema theory: The unreplicated "portrait d'homme" series from 1932[J]. The quarterly journal of experimental psychology, 2012, 65(11): 2258-2270.
[47] 岳阳市水利局.余凯行政处罚决定书[EB/OL]. [2025-03-20]. .
[48] 惠阳区民政局. 36小时找寻, 让走失少女平安归家[EB/OL]. [2025-03-20]. .
[49] 姜恩波,李娜.中国开放政府农业数据分析与评价[J].农业图书情报学报, 2020, 32(10): 4-15.
JIANG E B, LI N. Analysis and evaluation of Chinese open government agricultural Data[J]. Journal of library and information science in agriculture, 2020, 32(10): 4-15.
[50] LANGELLA C, ANESSI-PESSINA E, BOTICA REDMAYNE N, et al. Financial reporting transparency, citizens' understanding, and public participation: A survey experiment study[J]. Public administration, 2023, 101(2): 584-603.
[51] GHODOOSI B, TORRISI-STEELE G, WEST T, et al. Perceptions of data literacy and data literacy education[J]. Journal of librarianship and information science, 2024: 09610006241246789.
[52] 周霞, 王萍, 张韫麒, 等. 数据故事化实践应用分析: 以数据新闻为例[J]. 图书情报工作, 2021, 65(14): 119-127.
ZHOU X, WANG P, ZHANG Y Q, et al. Practical application analysis of data storytelling: Taking data news as an example[J]. Library and information service, 2021, 65(14): 119-127.
[53] HUSSAIN Z, RUI M T, WULFF D U. Novel embeddings improve the prediction of risk perception[J]. EPJ data science, 2024, 13(1): 38.
[54] SHIRI V, XIONG M, CHENG J H, et al. Motivating users to attend to privacy: A theory-driven design study[C]//Designing Interactive Systems Conference. Copenhagen Denmark. ACM, 2024: 258-275.
[1] ZHANG Tao, WU Sihang. How Achievement Goal Orientation Influences College Students' Usage Behaviors of AI Tutoring Tools: An Empirical Study Based on Dual Mediation [J]. Journal of library and information science in agriculture, 2025, (): 1-15.
[2] XIAO Qinghua. Difficulties and Countermeasures in Reading among Children Raised in in Intergenerational Caregiving Situations Rural Areas of China [J]. Journal of library and information science in agriculture, 2025, (): 1-11.
[3] DAI Xinwei, LI Feng. Enlightenment of AI Literacy Educational Designs and Practices at Japanese MDASH Literacy-level Approved Universities [J]. Journal of library and information science in agriculture, 2025, 37(5): 86-101.
[4] SHI Xujie, YUAN Fan, LI Jia. Searching as Learning in the Context of Generative Artificial Intelligence: Technological Pathways, Behavioral Evolution, and Ethical Challenges [J]. Journal of library and information science in agriculture, 2025, 37(5): 40-57.
[5] XIAO Keyi, LI Yunfan, CHEN Yingying, PENG Xi. User Experience of Public Library Intelligent Service from the Perspective of Actor Network Theory [J]. Journal of library and information science in agriculture, 2025, 37(4): 51-65.
[6] TAN Miao, DAI Mengfei. Empowered Digital Reading Promotion of Historical Documents with Generative AI [J]. Journal of library and information science in agriculture, 2025, 37(4): 83-93.
[7] GOU Ruike, LUO Wei. Influencing Factors of Continuous Use Intention of "Generation Z" Users of an AIGC Platform [J]. Journal of library and information science in agriculture, 2025, 37(3): 66-80.
[8] SANG Yuanyuan. Multimodal Learning Technology Aimed at Exploring the Innovative Path of Library Intelligence Service [J]. Journal of library and information science in agriculture, 2025, 37(3): 42-52.
[9] ZHANG Xingwang, LI Jie, LI Sifan, WANG Xiaopei. Theoretical Model, Model Innovation, and Important Implications of DeepSeek Empowering Library Knowledge Services [J]. Journal of library and information science in agriculture, 2025, 37(1): 4-16.
[10] SHI Qin, XIE Jing, WU Shang. Influencing Factors and Correlations of User Satisfaction with Mobile Health Applications [J]. Journal of library and information science in agriculture, 2025, 37(1): 33-46.
[11] ZHANG Mingjie, ZHAO Ruixue. Emotion Perception and Service Optimization in ChatGPT-Driven Smart Libraries [J]. Journal of library and information science in agriculture, 2024, 36(12): 74-88.
[12] Chaochen WANG, Ayang QI, Xiaoqing XU, Linwei CUI. Group Socialization of Digital Games to Encourage Users' Autonomous Reading Behavior and Content Backtracking: Based on the Domestic Console Game “Black Myth: WUKONG” Known Outside of Fixed Circle [J]. Journal of library and information science in agriculture, 2024, 36(11): 64-78.
[13] Kun HUANG, Qionghao GUO, Chenyu ZHOU, Lei LI. Information Demand and Supply of Rural Elderly: Based on a Field Investigation of Village C, Taiyuan City, Shanxi Province [J]. Journal of library and information science in agriculture, 2024, 36(11): 4-19.
[14] Yan MOU. Social Media Users' Expression, Formation Mechanism, and Coping Strategies for Algorithm Aversion [J]. Journal of library and information science in agriculture, 2024, 36(10): 86-94.
[15] Zheng WANG, Miao ZHUANG, Yudi ZHANG, Yaqi ZHANG. Factors Influencing Online Health Information Acquisition Behavior of Rural Elderly Groups in Western China: A Field Study from the Guanzhong Region of Shaanxi Province [J]. Journal of library and information science in agriculture, 2024, 36(10): 23-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!