中文    English

Journal of Library and Information Science in Agriculture

   

Building Consumption Data Systems driven by AI Plus Expert for Scientific and Technical Literature Information Resources

Guanghui YE, Kai TU, Lina HU, Li HAN, Zhiming FENG   

  1. School of information management, Central China Normal University, Wuhan 430079
  • Received:2024-07-01 Online:2024-11-26

Abstract:

[Purpose/Significance] Limited by the constraints of traditional literature classification systems, scientific and technical literature information resources face problems such as inadequate disclosure and resource utilization. At the same time, high-quality user-generated data cannot yet be integrated as data elements into services related to scientific and technical literature services, which prevents these services from adapting to the context of the open science and meeting the diverse knowledge needs of readers. This study aims to harness the technological breakthrough potential of AI to build a consumer-end data system for scientific and technical literature information resources driven by AI and experts. This will help to overcome the shortcomings of traditional services, such as the lack of supporting reading information and low interactivity between users, with the hope of promoting the optimization process of scientific and technical literature information resource services. [Method/Process] First, the study analyzes the four-dimensional value representation of the consumer-end data systems for scientific and technical literature information resources, including the intrinsic value, the tool value, the academic value, and the future value of annotation data. Then, following the processing flow of consumer-end data, namely the collection phase, utilization phase, and management phase, the paper proposes principles for the construction of consumer-end data systems. Furthermore, the paper deconstructs and analyzes the risks associated with the involvement of AI in the construction of consumer-end data systems, including four types of risks: machine algorithm risks, annotation content risks, annotation data risks and application risks. Finally, based on the degree of AI involvement in data annotation work, three innovative models of AI plus expert collaborates with user to accomplish data annotation for scientific and technical literature information resources are designed: the AI plus expert-assisted data annotation model, the AI plus expert collaborative data annotation model, and the AI plus expert-led data annotation model. [Results/Conclusions] Under the AI plus expert-assisted data annotation model, AI acts as a tool to complete surface-level information processing based on rules set by experts to assist users in data annotation. In the AI plus expert collaborative data annotation model, AI completes the review of pre-annotation tags for scientific and technical literature information resources, transforming users from a self-generated tag mode to an AI-generated data tag evaluation and selection mode, with experts assisting in the final review of data tag quality. In the AI plus expert-led data annotation model, users provide data annotation requirements, experts guide the process, and data annotation is automatically completed by the AI4S platform.

Key words: scientific and technical literature information resources, AI, system construction, data annotation, pattern design

CLC Number: 

  • G251

Table 1

Guidelines for building the system based on the process of consumer data processing"

消费端数据处理过程 建设原则 含义
消费端数据收集阶段 分类分级 对异类数据进行分级分类管理
新颖性 收集的数据需要具有新颖性,避免观点陈旧
价值性 收集的数据需要具有价值性
合规性 收集的数据不能含有歧视性
结构化 收集的数据需要结构化良好
消费端数据利用阶段 多维性 多维度对标注数据进行利用
准确性 提供的标注数据需要能与用户需求匹配
共享性 支持消费端数据共建共享
消费端数据管理阶段 可改善性 根据用户的反馈,能够对数据进行内容改善
技术保障性 需要建立技术平台,提供数据周密管理保障

Fig.1

Ethical risks of artificial intelligence in the field of data annotation"

Fig.2

Innovative model for data annotation of scientific and technical literature information resources with AI and expert collaboration"

1
韩彻驹, 张向前. 中国构建世界重要人才中心和创新高地的风险研究[J]. 科学管理研究, 2024, 42(3): 136-143.
HAN C J, ZHANG X Q. The risks of building world hubs for talent and innovation in China[J]. Scientific management research, 2024, 42(3): 136-143.
2
黄珂敏, 郑颖, 曲建升, 等. 学术虚拟社区中热点主题识别及其趋势预测方法框架研究[J/OL]. 情报科学, 2024: 1-16.
HUANG K M, ZHENG Y, QU J S, et al. The method framework of hot topic identification and trend prediction in academic virtual community[J/OL]. Information science, 2024: 1-16.
3
白荔, 俞紫梅. 传统分类法在网络环境下的发展探析[J]. 科技情报开发与经济, 2015(19): 1-3.
BAI L, YU Z M. Analysis on the development of traditional classification in the Internet era[J]. Sci-tech information development & economy, 2015(19): 1-3.
4
叶光辉, 祁宁杰, 唐明月, 等. 科技文献信息资源“生产-出版-消费” 价值链分析[J]. 情报理论与实践, 2022, 45(3): 110-117.
YE G H, QI N J, TANG M Y, et al. Analysis of the value chain of "production-publishing-consumption" of science and technology literature information resources[J]. Information studies: Theory & application, 2022, 45(3): 110-117.
5
杜秀杰, 葛赵青, 卓选鹏, 等. 数字出版时代学术论文的互动评价探索[J]. 编辑学报, 2014, 26(1): 10-12.
DU X J, GE Z Q, ZHUO X P, et al. Discussion on interactive evaluation of academic papers in the digital publishing era[J]. Acta editologica, 2014, 26(1): 10-12.
6
夏立新, 龙存钰, 胡畔, 等. 基于查询意图的细粒度图书分面检索研究[J]. 图书情报工作, 2024, 68(8): 122-132.
XIA L X, LONG C Y, HU P, et al. A study of fine-grained book-faceted retrieval based on query intent[J]. Library and information service, 2024, 68(8): 122-132.
7
张嘉翔, 潘敏, 张瑞. 基于自监督图网络的脑电情绪识别方法研究[J/OL]. 计算机科学, 2024: 1-9.
ZHANG J X, PAN M, ZHANG R. EEG emotion recognition method based on self supervised graph network[J/OL]. Computer science, 2024: 1-9.
8
孙岩, 周立新, 孙连君, 等. 知识图谱和大语言模型在航天测控问答系统中的融合应用研究[J]. 上海航天(中英文), 2024, 41(5): 178-184.
SUN Y, ZHOU L X, SUN L J, et al. Fusion application of knowledge graph and big language model to aerospace TT & C question-answering system[J]. Aerospace Shanghai (chinese & English), 2024, 41(5): 178-184.
9
李玥, 洪海蓝, 李文林, 等. 大语言模型构建鼻炎医案知识图谱中的应用研究[J/OL]. 计算机工程与应用, 2024: 1-11.
LI Y, HONG H L, LI W L, et al. A study on the application of a large language model in constructing a knowledge graph of medical cases of rhinitis[J/OL]. Computer engineering and applications, 2024: 1-11.
10
张超, 韩虓, 王芳. ChatGPT与知识生产和复用: 赋能、挑战与治理[J]. 图书与情报, 2023(3): 52-60.
ZHANG C, HAN X, WANG F. ChatGPT and knowledge production and reuse: Empowerment, challenges and governance[J]. Library & information, 2023(3): 52-60.
11
NASIH AHMED T, AZIZ MAHMOOD K. A critical discourse analysis of ChatGPT's role in knowledge and power production[J]. Arab world English journal, 2024, 1(1): 184-196.
12
WANG Y, WANG X, WANG X, et al. The ChatGPT after: Building knowledge factories for knowledge workers with knowledge automation[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(11): 2041-2044.
13
HU X, TIAN Y, NAGATO K, et al. Opportunities and challenges of ChatGPT for design knowledge management[J]. Procedia cirp, 2023, 119: 21-28.
14
王正超. AIGC介入科研知识生产: 风险表征、逻辑解构与责任重构[J/OL]. 情报资料工作, 2024: 1-13.
WANG Z C. AIGC intervention in scientific knowledge production: Risk characterization, logical deconstruction, and responsibility reconstruction[J/OL]. Information and documentation services, 2024: 1-13.
15
SCI-FI magazine overwhelmed by hundreds of AI-generated stories[EB/OL]. [2024-05-22].
16
朱武信, 夏翠娟, 吴建伟. 面向全流程管理的专家协同知识生产系统设计与实现——以家谱联合编目系统为例[J]. 图书馆杂志, 2024, 43(8): 4-12, 33.
ZHU W X, XIA C J, WU J W. Design and implementation of expert collaborative knowledge production system for full process management: Genealogy joint cataloging system[J]. Library journal, 2024, 43(8): 4-12, 33.
17
杨逐原. 社交化阅读时代知识生产与服务形态的变迁[J]. 新闻知识, 2022(5): 11-15.
YANG Z Y. Changes of knowledge production and service form in the era of social reading[J]. News research, 2022(5): 11-15.
18
戚德祥, 王佳康. 价值链重构: 数字出版国际传播效能提升策略[J]. 中国编辑, 2024(10): 20-26.
QI D X, WANG J K. Value chain reconstruction: The strategy to improve the international communication efficiency of digital publishing[J]. Chinese editors journal, 2024(10): 20-26.
19
丛挺, 奚心远. 数据要素驱动出版服务创新研究——基于《“数据要素×”三年行动计划(2024—2026年)》分析[J]. 中国编辑, 2024(8): 82-88.
CONG T, XI X Y. Research on the innovation of publishing service driven by data elements-Based on the analysis of "data elements X" three-year action plan (2024-2026)[J]. Chinese editors journal, 2024(8): 82-88.
20
陈铭. 开放科学背景下的数据出版: 功能、困境与治理进路[J]. 科技与出版, 2024(10): 80-88.
CHEN M. Data publishing in the context of open science: Functionality, dilemmas, and governance approaches[J]. Science-technology & publication, 2024(10): 80-88.
21
BUCUR C I, KUHN T, CEOLIN D, et al. Nanopublication-based semantic publishing and reviewing: A field study with formalization papers[J]. PeerJ Computer Science, 2023, 9: e1159.
22
实验室简介-语义出版与知识服务重点实验室[EB/OL]. [2024-05-10].
23
刘岩. 基于知识消费理念的图书馆知识服务管理模式研究[J]. 科技风, 2020(1): 237-238.
LIU Y. Research on library's knowledge service management model based on the concept of knowledge consumption[J]. Technology wind, 2020(1): 237-238.
24
梁春启, 赵晓明. 数字时代分享经济环境下知识付费定价研究——基于知乎平台数据的算例分析[J/OL]. 价格理论与实践, 2024: 1-5.
LIANG C Q, ZHAO X M. Research on knowledge payment pricing in the sharing economy environment of the digital age: An analytical case study based on zhihu platform data[J/OL]. Price: Theory & practice, 2024: 1-5.
25
郭宇, 王晰巍, 杨梦晴. 网络社群知识消费用户体验评价研究——基于扎根理论和BP神经网络的分析[J]. 情报理论与实践, 2018, 41(3): 117-122, 141.
GUO Y, WANG X W, YANG M Q. Evaluation on users' experience of knowledge consumption in network community based on grounded theory and BP neural network analysis[J]. Information studies: Theory & application, 2018, 41(3): 117-122, 141.
26
XIE Q Q, BISHOP J A, TIWARI P, et al. Pre-trained language models with domain knowledge for biomedical extractive summarization[J]. Knowledge-based systems, 2022, 252: 109460.
27
陆伟, 刘寅鹏, 石湘, 等. 大模型驱动的学术文本挖掘——推理端指令策略构建及能力评测[J]. 情报学报, 2024, 43(8): 946-959.
LU W, LIU Y P, SHI X, et al. Large language model-driven academic text mining: Construction and evaluation of inference-end prompting strategy[J]. Journal of the China society for scientific and technical information, 2024, 43(8): 946-959.
28
PARASKEVOPOULOS S, SMEETS P, TIAN X, et al. Using Artificial Intelligence to extract information on pathogen characteristics from scientific publications[J]. International journal of hygiene and environmental health, 2022, 245: 114018.
29
科技文献大模型2.0发布暨科技文献内容智能分析与应用学术研讨会在合肥成功举办 [EB/OL]. [2024-06-10].
30
ZALA K, ACHARYA B, MASHRU M, et al. Transformative automation: AI in scientific literature reviews[J]. International journal of advanced computer science and applications, 2024, 15(1): 1246-1255.
31
RATHI H, MALIK A, BEHERA D C, et al. P21 A comparative analysis of large language models (LLM) utilised in systematic literature review[J]. Value in health, 2023, 26(12): S6.
32
陈博立, 鲜国建, 赵瑞雪, 等. 科技文献问答式智能检索总体设计与关键技术探析[J]. 中国图书馆学报, 2023, 49(3): 92-106.
CHEN B L, XIAN G J, ZHAO R X, et al. Overall design and key technology of Q & A style intelligent retrieval for scientific and technical literature[J]. Journal of library science in China, 2023, 49(3): 92-106.
33
Scopus AI : content Trusted. Informed by responsible AI[EB/OL]. [2024-06-11].
34
钱力, 刘细文, 张智雄, 等. AI+智慧知识服务生态体系研究设计与应用实践——以中国科学院文献情报中心智慧服务平台建设为例[J]. 图书情报工作, 2021, 65(15): 78-90.
QIAN L, LIU X W, ZHANG Z X, et al. Design and application of ecological system of intelligent knowledge service based on AI - An example of building of intelligent service platform of national science library, CAS[J]. Library and information service, 2021, 65(15): 78-90.
35
杜宝贵, 丰佰恒. 科学数据要素交易助力新质生产力实现: 机理、困境与破局[J/OL]. 现代情报, 2024: 1-13.
DU B G, FENG B H. Scientific research data element trading helps realize new quality productivity: Mechanisms, dilemmas and solutions[J/OL]. Journal of modern information, 2024: 1-13.
36
周江林. AI4S对我国高校基础研究的影响机理及实践边界[J]. 教育发展研究, 2023, 43(21): 31-38.
ZHOU J L. The impact mechanism and practical boundaries of AI for science on basic research in Chinese universities[J]. Research in educational development, 2023, 43(21): 31-38.
37
王秀慧, 赵治军. 基于用户偏好行为数据的数字图书馆资源推荐方法研究[J]. 软件, 2022, 43(5): 8-12, 45.
WANG X H, ZHAO Z J. Research on resource recommendation method of digital library based on user preference behavior data[J]. Software, 2022, 43(5): 8-12, 45.
38
王元新, 邵亚伟, 黄金霞. 开放科学时代下的可复现性危机与机遇[J/OL]. 科学学研究, 2024: 1-18.
WANG Y X, SHAO Y W, HUANG J X. Reproducibility crisis and opportunity in the era of open science[J/OL]. Studies in science of science, 2024: 1-18.
39
张立, 王扬, 李梦竹, 等. 对近年来数字出版评优产品的追踪测评及分析(Ⅶ)——传统出版单位数字出版产品综合分析报告[J]. 科技与出版, 2024(10): 36-50.
ZHANG L, WANG Y, LI M Z, et al. Follow-up evaluation and analysis of digital publishing products in recent years (ⅶ) - Comprehensive analysis report of digital publishing products of traditional publishing units[J]. Science-technology & publication, 2024(10): 36-50.
40
孙坦, 张智雄, 周力虹, 等. 人工智能驱动的第五科研范式(AI4S)变革与观察[J]. 农业图书情报学报, 2023, 35(10): 4-32.
SUN T, ZHANG Z X, ZHOU L H, et al. The transformation and observations of AI for science(AI4S) driven by artificial intelligence[J]. Journal of library and information science in agriculture, 2023, 35(10): 4-32.
41
马费成, 王淳洋. 数字产业化的理论逻辑与实践路径[J/OL]. 信息资源管理学报, 2024: 1-13.
MA F C, WANG D Y. The theoretical logic and implementation path of digital industrialization[J/OL]. Journal of information resources management, 2024: 1-13.
42
唐欣, 许永斌. 数字产业化与产业数字化耦合赋能城市高质量发展的实证检验[J]. 统计与决策, 2023, 39(20): 104-108.
TANG X, XU Y B. An empirical test of the coupling of digital industrialization and industrial digitalization to empower the high-quality development of cities[J]. Statistics & decision, 2023, 39(20): 104-108.
43
柴国荣, 高旭, 周福洲. 基于界面集成的供应链全生命周期风险预警模式研究[J]. 科技进步与对策, 2009, 26(2): 23-26.
CHAI G R, GAO X, ZHOU F Z. Study on the risk warning mode of supply chain life cycle based on interface integration[J]. Science & technology progress and policy, 2009, 26(2): 23-26.
44
AL-BAHAR J F, CRANDALL K C. Systematic risk management approach for construction projects[J]. Journal of construction engineering and management, 1990, 116(3): 533-546.
45
王旭, 程光辉, 赵鸿玉, 等. 技术性压力视角下智慧图书馆人工智能风险防控体系研究[J]. 图书馆学研究, 2024(7): 56-69.
WANG X, CHENG G H, ZHAO H Y, et al. Risk prevention & control system of artificial intelligence in smart libraries: Perspective of technostress[J]. Research on library science, 2024(7): 56-69.
46
王佑镁, 王欣颖, 柳晨晨. 教育领域生成式人工智能应用的伦理风险管理框架研究[J]. 电化教育研究, 2024, 45(10): 28-34, 42.
WANG Y M, WANG X Y, LIU C C. Research on ethical risk management framework for generative artificial intelligence application in education[J]. E-education research, 2024, 45(10): 28-34, 42.
47
The 15 biggest risks of artificial intelligence[EB/OL]. [2024-07-06].
48
AI risk management framework[EB/OL]. [2024-07-09].
49
徐暾. 电子数据保管链制度的价值基础及其建构进路[J]. 湖南社会科学, 2023(4): 121-131.
XU T. The value basis and construction path of electronic evidence custody chain system[J]. Social sciences in Hunan, 2023(4): 121-131.
50
杨垠红. 加强算法风险侵权法律规制[EB/OL]. [2024-07-09].
51
ChatGPT and large language model bias[EB/OL]. [2024-07-17].
52
江必新, 王鑫. 数字行政行为算法歧视的法律规制[J/OL]. 学术论坛, 2024: 1-15.
JIANG B X, WANG X. Legal regulation of algorithmic discrimination in digital administrative act[J/OL]. Academic forum, 2024: 1-15.
53
王飞跃, 缪青海. 人工智能驱动的科学研究新范式: 从AI4S到智能科学[J]. 中国科学院院刊, 2023, 38(4): 536-540.
WANG F Y, MIAO H Q. Novel paradigm for AI-driven scientific research: From AI4S to intelligent science[J]. Bulletin of Chinese academy of sciences, 2023, 38(4): 536-540.
54
张佳欣. AI“模型崩溃”风险需警惕[N]. 科技日报, 2024-09-25(004).
55
AI homogenization is shaping the world[EB/OL]. [2024-07-17].
56
Does ChatGPT violate New York Times' copyrights?[EB/OL]. [2024-07-17].
57
王俊, 谢青伶, 刘畅. 日常生活情境下用户与生成式人工智能交互行为分析[J/OL]. 图书情报知识, 2024: 1-11.
WANG J, XIE Q L, LIU C. User's interaction behavior with generative artificial intelligence in daily life contexts[J/OL]. Documentation, information & knowledge, 2024: 1-11.
58
王飞跃, 缪青海. 平行科学: 大模型时代AI4S的前沿技术与框架体系[J]. 人民论坛·学术前沿, 2024(14): 64-79.
WANG F Y, MIAO Q H. Parallel science: Cutting-edge technologies and framework system of AI4S in the era of large models[J]. Frontiers, 2024(14): 64-79.
59
孙战彪, 付长友, 张红军. 全媒体出版趋势下第三代图书馆泛在服务研究[J]. 图书馆工作与研究, 2018(12): 5-12.
SUN Z B, FU C Y, ZHANG H J. Research on ubiquitous service of the third generation libraries under the trend of omnimedia publishing[J]. Library work and study, 2018(12): 5-12.
60
SUN C M, HWANG G J, YIN Z Y, et al. Trends and issues of social annotation in education: A systematic review from 2000 to 2020[J]. Journal of computer assisted learning, 2023, 39(2): 329-350.
61
钱力, 刘志博, 胡懋地, 等. AI就绪的科技情报数据资源建设模式研究[J]. 农业图书情报学报, 2024, 36(3): 32-45.
QIAN L, LIU Z B, HU M D, et al. Construction model of AI-ready for scientific and technological intelligence data resources[J]. Journal of library and information science in agriculture, 2024, 36(3): 32-45.
62
李蕾, 刘钊, 王栩彦. 用户体验视角下ChatGPT辅助信息检索的可用性研究[J/OL]. 情报理论与实践, 2024: 1-12.
LI L, LIU Z, WANG X Y. Usability study of ChatGPT-assisted information retrieval from the perspective of user experience[J/OL]. Information studies: Theory & application, 2024: 1-12.
63
PREECE J, ROGERS Y, SHARP H, et al. Human-computer interaction[M]. Essex, United Kingdom: Addison-Wesley Longman Ltd., 1994.
64
ALRIZQ M, SOLANGI S ALI, ALGHAMDI A, et al. An architecture supporting intelligent mobile healthcare using human-computer interaction HCI principles[J]. Computer systems science and engineering, 2022, 40(2): 557-569.
65
秦雪冰, 郭博. 智能广告文案的消费者参与度研究——基于汽车之家APP的实证检验[J]. 新闻与传播研究, 2022, 29(6): 56-72, 127.
QIN X B, GUO B. Artificial intelligence advertising copy's influence on consumer engagement: A field experiment approach[J]. Journalism & communication, 2022, 29(6): 56-72, 127.
66
闫乃之. 情智兼备的媒介平台人机交互演进与价值边界拓展[J]. 陕西师范大学学报(哲学社会科学版), 2024, 53(5): 103-117.
YAN N Z. The evolution and value boundary expansion of human-computer interaction on media platforms that combine emotions and intelligence[J]. Journal of Shaanxi normal university (philosophy and social sciences edition), 2024, 53(5): 103-117.
67
朱禹, 叶继元, 贾毓洁. 图书馆学的人工智能生成内容(AIGC): 概念框架与研究进路[J/OL]. 图书馆论坛, 2024: 1-10.
ZHU Y, YE J Y, JIA Y J. AI-generated content(AIGC) in library science: Conceptual framework and research agenda[J/OL]. Library tribune, 2024: 1-10.
68
张慧, 石肖肖. AIGC在高校图书馆智慧服务中的应用探索[J]. 图书馆学刊, 2024, 46(9): 58-62, 67.
ZHANG H, SHI X X. Exploration of AIGC application in intelligent services of university libraries[J]. Journal of library science, 2024, 46(9): 58-62, 67.
69
刘昊坦, 刘家伟, 张帆, 等. 科技文献的多层次结构功能识别[J]. 信息资源管理学报, 2024, 14(3): 90-103.
LIU H T, LIU J W, ZHANG F, et al. Multi-level functional structure recognition of scientific literature[J]. Journal of information resources management, 2024, 14(3): 90-103.
70
姜鹏, 任龑, 朱蓓琳. 大语言模型在分类标引工作中的应用探索[J]. 农业图书情报学报, 2024, 36(5): 32-42.
JIANG P, REN Y, ZHU B L. Exploration and practice of classification indexing combined with large language models[J]. Journal of library and information science in agriculture, 2024, 36(5): 32-42.
71
王飞跃, 王雨桐. 数字科学家与平行科学: AI4S和S4AI的本源与目标[J]. 中国科学院院刊, 2024, 39(1): 27-33.
WANG F Y, WANG Y T. Digital scientists and parallel sciences: The origin and goal of AI for science and science for AI[J]. Bulletin of Chinese academy of sciences, 2024, 39(1): 27-33.
72
崔小燕, 张长立. 生成式人工智能诱发的风险样态、生成逻辑与智慧治理策略——基于传播政治经济学的分析[J]. 宁夏社会科学, 2023(4): 188-198.
CUI X Y, ZHANG C L. The patterns, generative logic and intelligent governance strategies of risk induced by generative artificial intelligence - Analysis based on political economy of communication[J]. Ningxia social sciences, 2023(4): 188-198.
73
吴文璟, 唐博文, 李艳. 数字时代孤独的概念演变与表现方式[J]. 传媒论坛, 2024, 7(11): 30-32, 56.
WU W J, TANG B W, LI Y. Concept evolution and expression of loneliness in the digital age[J]. Media forum, 2024, 7(11): 30-32, 56.
74
刘瑀钒. 从技术依赖到平台隔离: 数字时代青年群体孤独感的形成[J]. 吉首大学学报(社会科学版), 2024, 45(5): 110-121.
LIU Y F. From technology addiction to platform isolation: The formation of loneliness among young people in the digital age[J]. Journal of Jishou University (social sciences), 2024, 45(5): 110-121.
[1] Haiting MA, Chuansheng CHENG. Continuance Intention to Use AI Chatbots in Libraries: Mediation Based on Emotional Experience [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 34-49.
[2] Ru WU, Ruhan ZHANG, Chenxing DAI, cheng LU. Intellectual Property Literacy Education in University Libraries Based on Innovative Talent Cultivation [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 79-87.
[3] PENG Lihui, ZHANG Qiong, LI Tianyi. Risk of AI Algorithmic Discrimination Embedded in Government Data Governance and Its Prevention and Control [J]. Journal of Library and Information Science in Agriculture, 2024, 36(5): 23-31.
[4] Liqin YAO, Hai ZHANG. Model Construction and Empirical Research on the Influencing Factors of AIGC User Dropout Behavior [J]. Journal of Library and Information Science in Agriculture, 2024, 36(5): 79-92.
[5] LUO Guofeng, LIU Qingsheng. Application Scene and Practice of ChatGPT Empowering Information Literacy Education [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 91-101.
[6] HUANG Xinyi, LIU Wenchang. Proactively Breaking the Circle: Media Integration and the Creation of New Quality Productivity and Rural Revitalization [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 72-90.
[7] QIAN Li, LIU Zhibo, HU Maodi, CHANG Zhijun. Construction Model of AI-Ready for Scientific and Technological Intelligence Data Resources [J]. Journal of Library and Information Science in Agriculture, 2024, 36(3): 32-45.
[8] ZOU Yayi. ChatGPT Strengthens Library Intelligence Services: Opportunities, Challenges and Development Strategies [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 71-80.
[9] WANG Wei, XU Xin. Transformation and Development of Intangible Cultural Heritage through Technology [J]. Journal of Library and Information Science in Agriculture, 2024, 36(1): 58-70.
[10] SUN Lili, WANG WeiJie, SHENG Jiefei. Influencing Factors of Scientific Data Value Increment Based on System Dynamics [J]. Journal of Library and Information Science in Agriculture, 2023, 35(9): 28-42.
[11] WANG Sili, ZHANG Ling, YANG Heng, LIU Wei. Review of Deep Learning for Language Modeling [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 4-18.
[12] ZHANG Jianing, SONG Xigui. ChatGPT and the Its Impact on the Development Trends of the Library Field [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 19-29.
[13] FU Rongxin, YANG Xiaohua. Analysis of AIGC Language Models and Application Scenarios in University Libraries [J]. Journal of Library and Information Science in Agriculture, 2023, 35(7): 27-38.
[14] CHEN Yuanyuan, WANG Lei. Think-Tank's Text Summarization Based on Combined Keywords and Contrastive Learning Training [J]. Journal of Library and Information Science in Agriculture, 2023, 35(6): 72-82.
[15] MA Lecun, ZHAN Xini, ZHU Qiyu, SUN Rong, LI Baiyang. Digital Intelligence Integration Innovation Development of GLAM Driven by AIGC [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 4-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!