中文    English

Journal of Library and Information Science in Agriculture ›› 2024, Vol. 36 ›› Issue (6): 34-49.doi: 10.13998/j.cnki.issn1002-1248.24-0390

Previous Articles     Next Articles

Continuance Intention to Use AI Chatbots in Libraries: Mediation Based on Emotional Experience

Haiting MA, Chuansheng CHENG()   

  1. Shandong University Library, Jinan 250100
  • Received:2024-05-03 Online:2024-06-05 Published:2024-09-30
  • Contact: Chuansheng CHENG

Abstract:

[Purpose/Significance] In the era of digital intelligence, robots technology is playing an increasingly important role in the field of education. The applying of AI chatbots in library scenarios is an important lever for the future construction of learning ecosystems in universities. This study aims to explain the influencing factors of users' willingness to continue using library AI chatbots, and provide a new perspective beyond the IT perspective to understand the impact of the basic characteristics of AI chatbots on human behavioral intentions, in order to better understand the sustainability thinking of interpreters and provide some inspiration for the further development of library AI chatbots in the future learning ecosystem. [Method/Process] Based on U&G theory and the SOR framework, we developed a conceptual model of library AI chatbot users's willingness to continue using the chatbot. Data were collected using a questionnaire survey method, with teachers and students as the main respondents. The variables of the AI chatbot user's continuous usage intention model were set to 8, each consisting of 3-6 options, and then measured using a 7-point Likert scale. Finally, the variables and hypotheses in the model were validated using a mixed research method of PLS-SEM and fsQCA. [Results/Conclusions] The research results indicate that three types of satisfaction, hedonic (entertainment and avoidance), social (social presence), and utilitarian (convenience and information consultation), have a significant positive impact on emotional experience (awe experience and emotional participation), with avoidance having the greatest impact on awe experience and social presence having the greatest impact on emotional participation. Emotional experience has a significant positive impact on the intention to continue using, with awe experience having the greatest impact on the intention to continue using. Emotional experience, as a mechanism of action, affects user satisfaction and willingness to use. Based on the data analysis, four suggestions are proposed from the perspective of future learning ecology design and user psychology. When designing library AI chatbots, the usage scenarios should be enriched, and the healing function, immersive experiences and immersive experiences should be emphasized. The limitation of this study is that the use of first-hand cross-sectional data cannot prove whether the influencing mechanism changes over time. In the future, a combination of first-hand and second-hand data can be used to improve the explanatory power. In addition, although this study ensures the validity and reliability of cross-sectional data, there may be geographic and cultural differences in users' behavioral intentions. In the future, a comparative study of the intention to continue using library AI chatbots in different regions and levels can be considered.

Key words: library, AI chatbot, awe experience, emotional involvement, future learning ecosystem

CLC Number: 

  • G258.6

Fig.1

Conceptual model of user willingness to continue using library AI chatbots in the future learning ecosystem"

Table 1

Factor measurement options of continuance intention to use AI chatbots"

研究变量 测量选项 来源
娱乐 EN1.我喜欢使用AI聊天机器人,因为它给我带来了很多乐趣 [34]
EN2.我通常会花时间和AI聊天机器人在一起,因为它们很有趣
EN3.我无聊的时候会用AI聊天机器人打发时间
逃避 ES1.AI聊天机器人帮助我忘记烦恼和压力 [35]
ES2.AI聊天机器人帮助我避免孤独
ES3.AI聊天机器人帮助我逃离现实世界
社交存在 SP1.与AI聊天机器人的互动让我感受到了社交生活 [36]
SP2.我对AI聊天机器人有一种人类敏感性
SP3.在我与AI聊天机器人的互动中,我能够做自己,展示我到底是什么样的人
SP4.与AI聊天机器人的互动让我感觉很舒服,就像和朋友在一起一样
信息咨询 IS1.我使用AI聊天机器人来获取我需要的信息 [17]
IS2.我确实使用AI聊天机器人作为信息来源
IS3.使用AI聊天机器人可以提高我对所提问题的理解
IS4.使用AI聊天机器人可以解决我的疑虑
便利性 CON1.我认为AI聊天机器人使用起来很方便 [37]
CON2.我可以在电脑或智能手机上随时随地使用AI聊天机器人
CON3.使用AI聊天机器人时,我可以用更少的努力得到我想要的东西
敬畏体验 当我使用AI聊天机器人产品时 [30]
AE1.我总是有一种与它联系在一起的感觉
AE2.我总是和它有一种合一的感觉
AE3.有时,我感到浩瀚无垠,惊得下巴都掉下来了
AE4.有时,我发现很难完全理解这段经历
AE5.有时,我觉得自己置身于某种宏伟的事物中,并试图理解我所经历的
AE6.有时,我会起鸡皮疙瘩,喘不过气来
情感参与 EI1.当我使用AI聊天机器人产品时,我会深深地感受到它 [21]
EI2.在我结束与AI聊天机器人的对话后,我可能会保留一段时间的使用记忆
EI3.当我使用AI聊天机器人产品时,我会沉浸于聊天机器人
持续使用 CIU1.我想继续使用AI聊天机器人,而不是停止使用 [38]
CIU2.如果可能的话,我打算继续使用AI聊天机器人
CIU3.我将来会继续使用AI聊天机器人

Table 2

Characteristics of the participants"

项目 变量 数量 占比/%
性别 175 44.4
219 55.6
总计 394 100.0
年龄 19岁及以下 45 11.4
20~29岁 157 39.8
30~39岁 120 30.5
40~49岁 63 16.0
50岁及以上 9 2.3
总计 394 100.0
受教育程度 本科 246 62.4
硕士及以上 148 37.6
总计 394 100.0
聊天机器人的使用频率(h/天) 0.5h及以下 153 38.8
0.5~1h 105 26.6
1~2h 89 22.6
2~5h 37 9.4
5h及以上 10 2.5
总计 394 100.0

Table 3

Reliability and validity results"

Construct Cronbach's α VIF AVE CR MSV ASV
EN 0.839 1.575 0.755 0.902 0.346 0.510
ES 0.845 1.852 0.763 0.906 0.346 0.540
SP 0.864 1.665 0.710 0.907 0.403 0.573
IS 0.868 1.733 0.717 0.910 0.403 0.557
CON 0.829 1.601 0.744 0.897 0.337 0.547
AE 0.899 1.599 0.664 0.922 0.380 0.534
EI 0.837 1.627 0.754 0.902 0.360 0.545
CIU 0.820 1.634 0.736 0.893 0.380 0.552

Table 4

The square roots of AVEs"

项目 EN ES SP IS CON AE EI CIU
EN 0.869
ES 0.497 0.873
SP 0.486 0.483 0.843
IS 0.410 0.437 0.550 0.847
CON 0.417 0.451 0.465 0.491 0.863
AE 0.422 0.473 0.472 0.480 0.460 0.815
EI 0.442 0.449 0.515 0.474 0.457 0.427 0.868
CIU 0.361 0.421 0.471 0.509 0.479 0.533 0.476 0.858

Table 5

The results of HTMT"

项目 EN ES SP IS CON AE EI CIU
EN -
ES 0.590 -
SP 0.570 0.565 -
IS 0.480 0.511 0.635 -
CON 0.496 0.538 0.549 0.575 -
AE 0.481 0.543 0.534 0.541 0.528 -
EI 0.525 0.533 0.604 0.554 0.547 0.492 -
CIU 0.434 0.505 0.559 0.606 0.578 0.619 0.575 -

Table 6

PLS-SEM results"

项目 假设 路径系数 t统计量 p 是否支持假设
EN→AE H1a 0.109 2.032 0.042 Yes*
EN→EI H1b 0.135 2.619 0.009 Yes**
ES→AE H2a 0.190 3.685 <.001 Yes***
ES→EI H2b 0.132 2.491 0.013 Yes*
SP→AE H3a 0.145 2.498 0.013 Yes*
SP→EI H3b 0.224 3.927 <.001 Yes***
IS→AE H4a 0.190 3.159 0.002 Yes**
IS→EI H4b 0.159 3.000 0.003 Yes**
CON→AE H5a 0.168 3.413 0.001 Yes**
CON→EI H5b 0.159 2.985 0.003 Yes**
AE→CIU H6 0.404 9.228 <.001 Yes***
EI→CIU H7 0.304 6.548 <.001 Yes***

Table 7

Mediation results"

项目 直接效应 p 间接效应 95%置信区间 SE值 调节类型
EN→AE→CIU 0.066 0.143 0.152 (0.104, 0.205) 0.026 间接调节
EN→EI→CIU 0.066 0.143 0.119 (0.075, 0.166) 0.024 间接调节
ES→AE→CIU 0.125 0.006 0.158 (0.109, 0.214) 0.027 补充调节
ES→EI→CIU 0.125 0.006 0.112 (0.067, 0.161) 0.024 补充调节
SP→AE→CIU 0.184 <.001 0.159 (0.110, 0.212) 0.026 补充调节
SP→EI→CIU 0.184 <.001 0.119 (0.031, 0.110) 0.027 补充调节
IS→AE→CIU 0.243 <.001 0.146 (0.026, 0.126) 0.025 补充调节
IS→EI→CIU 0.243 <.001 0.102 (0.098, 0.198) 0.025 补充调节
CON→AE→CIU 0.203 <.001 0.146 (0.100, 0.198) 0.025 补充调节
CON→EI→CIU 0.203 <.001 0.105 (0.061, 0.152) 0.023 补充调节

Table 8

Necessary conditions"

前因条件 一致性 覆盖度
娱乐 0.741 0.786
~娱乐 0.431 0.683
社交存在 0.777 0.815
~社交存在 0.396 0.638
逃避 0.760 0.803
~逃避 0.408 0.650
信息咨询 0.770 0.819
~信息咨询 0.399 0.629
便利性 0.789 0.807
~便利性 0.377 0.631
敬畏体验 0.810 0.831
~敬畏体验 0.373 0.621
情感参与 0.791 0.809
~情感参与 0.377 0.633

Table 9

Sufficient condition"

充分条件 持续使用意愿
S1 S2 S3 S4 S5 S6
娱乐
逃避
社交存在
信息咨询
便利性
敬畏体验
情感参与
一致性 0.948 0.960 0.950 0.953 0.936 0.960
原始覆盖度 0.524 0.532 0.149 0.175 0.180 0.189
唯一覆盖度 0.027 0.039 0.012 0.014 0.005 0.010
总体解的一致性 0.923
总体解的覆盖度 0.632

Table 10

Models from subsample (Group 1)"

子样本模型 原始覆盖度 唯一覆盖度 一致性
M1: EN*SP*ES*CON*AE*EI 0.424 0.032 0.946
M2: EN*SP*IS*CON*AE*EI 0.419 0.026 0.952
M3: EN*ES*IS*CON*AE*EI 0.410 0.017 0.954
M4: ~EN*SP*ES*IS*CON*AE*~EI 0.141 0.018 0.940
M5: ~EN*SP*ES*IS*~CON*AE*EI 0.141 0.025 0.943
总体解的一致性 0.925
总体解的覆盖度 0.513

Fig.2

XY plots with holdout sample (Group 2)"

1
DWIVEDI Y K, KSHETRI N, HUGHES L, et al. Opinion paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy[J]. International journal of information management, 2023, 71: 102642.
2
ADAMOPOULOU E, MOUSSIADES L. Chatbots: History, technology, and applications[J]. Machine learning with applications, 2020, 2: 100006.
3
BALAKRISHNAN J, ABED S S, JONES P. The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?[J]. Technological forecasting and social change, 2022, 180: 121692.
4
HYEON J. Continuance intention to use artificial intelligence personal assistant: Type, gender, and use experience[J]. Heliyon, 2022, 8(9): e10662.
5
ASHFAQ M, YUN J, YU S B, et al. I, Chatbot: Modeling the determinants of users' satisfaction and continuance intention of AI-powered service agents[J]. Telematics and informatics, 2020, 54: 101473.
6
沈鹏熠, 李金雄, 万德敏. “以情动人”还是“以理服人”? 人工智能聊天机器人角色对顾客情感依恋的影响研究[J/OL]. 南开管理评论, 2024: 1-20.
SHEN P Y, Li J X, WAN D M. "Emotional appeal or rational persuasion"? A study on the impact of artificial intelligence chatbot roles on customer emotional attachment[J/OL]. Nankai business review, 2024: 1-20.
7
王永贵, 张静. 定制服务代理对消费者购买意愿的影响——基于AI聊天机器人与人工服务比较的实验研究[J]. 学习与探索, 2024(6): 145-159, 196.
WANG Y G, ZHANG J. The impact of customized service agents on consumers' purchase intention: an experimental study based on the comparison between AI chatbots and human services[J]. Study & exploration, 2024(6): 145-159, 196.
8
刘莉, 邵波. 生成式AI赋能智慧图书馆的融合路径探析——以扎耶德大学图书馆为例[J]. 图书馆学研究, 2023(12): 34-43.
LIU L, SHAO B. Exploration of the integration path of generative AI empowering smart libraries: A case study of Zayed university library[J]. Library science studies, 2023(12): 34-43.
9
王文韬, 钱鹏博, 丁雨辰, 等. 个性化内容推荐关闭对移动社交媒体持续使用意愿的影响[J]. 图书情报工作, 2023, 67(11): 88-100.
WANG W T, QIAN P B, DING Y C, et al. The impact of personalized content recommendation close on continuous use intention of mobile social media[J]. Library and information service, 2023, 67(11): 88-100.
10
DAVIS F D. Perceived usefulness, perceived ease of use, and user acceptance of information technology[J]. MIS quarterly, 1989, 13(3): 319.
11
雷承锋, 邢振江. AIGC重构消费行为: 持续使用意愿影响因素[J]. 技术经济与管理研究, 2024(6): 152-158.
LEI C F, XING Z J. AIGC reshaping behavior: Study on influencing factors of intention to continue use[J]. Journal of technical economics & management, 2024(6): 152-158.
12
脱润萱, 虞涵. 游戏化数字阅读App的使用意愿研究[J]. 当代传播, 2023(6): 49-55.
TUO R X, YU H. Study on the willingness to use gamification digital reading app[J]. Contemporary communication, 2023(6): 49-55.
13
倪洁玲, 刘泽, 邵波. 下一代图书馆服务平台用户持续使用意愿影响因素研究[J]. 图书馆学研究, 2024(4): 112-123.
NI J L, LIU Z, SHAO B. A study on the factors influencing users' continuous usage intention of the next-generation library service platform[J]. Library science research, 2024(4): 112-123.
14
沈书生. 学习新生态: 构建信息化学习力[J]. 苏州大学学报(教育科学版), 2020, 8(1): 1-8.
SHEN S S. New learning ecology: Building E-learning power[J]. Journal of Soochow University (educational science edition), 2020, 8(1): 1-8.
15
中华人民共和国教育部教育部高等教育司2023年工作要点[EB/OL]. [2024-01-16].
16
RUGGIERO T E. Uses and gratifications theory in the 21st century[J]. Mass communication and society, 2000, 3(1): 3-37.
17
PAPACHARISSI Z, RUBIN A M. Predictors of internet use[J]. Journal of broadcasting and electronic media, 2000, 44: 175-196.
18
WHITING A, WILLIAMS D. Why people use social media: A uses and gratifications approach[J]. Qualitative market research, 2013, 16(4): 362-369.
19
LI H X, LIU Y, XU X Y, et al. Modeling hedonic is continuance through the uses and gratifications theory: An empirical study in online games[J]. Computers in human behavior, 2015, 48: 261-272.
20
MA Y Y. To shop or not: Understanding Chinese consumers' live-stream shopping intentions from the perspectives of uses and gratifications, perceived network size, perceptions of digital celebrities, and shopping orientations[J]. Telematics and informatics, 2021, 59: 101562.
21
ABBASI A Z, AYAZ N, KANWAL S, et al. TikTok app usage behavior: The role of hedonic consumption experiences[J]. Data technologies and applications, 2023, 57(3): 344-365.
22
CHENG Y, JIANG H. How do AI-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use[J]. Journal of broadcasting & electronic media, 2020, 64(4): 592-614.
23
MEHRABIAN A, RUSSELL J A. An approach to environmental psychology[M]. Cambridge, Mass., M.I.T. Press: 1974.
24
KAMBOJ S, SARMAH B, GUPTA S, et al. Examining branding co-creation in brand communities on social media: Applying the paradigm of stimulus-organism-response[J]. International journal of information management, 2018, 39: 169-185.
25
HOLBROOK M B, BATRA R. Assessing the role of emotions as mediators of consumer responses to advertising[J]. Journal of consumer research, 1987, 14(3): 404.
26
KAUR P, DHIR A, CHEN S F, et al. Why do people purchase virtual goods? A uses and gratification (U&G) theory perspective[J]. Telematics and informatics, 2020, 53: 101376.
27
BIOCCA F, NOWAK K. Plugging your body into the telecommunication system: Mediated embodiment, media interfaces, and social virtual environments[J]. Communication technology and society, 2001: 407-447.
28
KELTNER D, HAIDT J. Approaching awe, a moral, spiritual, and aesthetic emotion[J]. Cognition & emotion, 2003, 17(2): 297-314.
29
YADEN D B, KAUFMAN S B, HYDE E, et al. The development of the Awe Experience Scale (AWE-S): A multifactorial measure for a complex emotion[J]. The journal of positive psychology, 2019, 14(4): 474-488.
30
KHARE A, KAUTISH P, KHARE A. The online flow and its influence on awe experience: An AI-enabled e-tail service exploration[J]. International journal of retail & distribution management, 2023, 51(6): 713-735.
31
HINSCH C, FELIX R, RAUSCHNABEL P A. Nostalgia beats the wow-effect: Inspiration, awe and meaningful associations in augmented reality marketing[J]. Journal of retailing and consumer services, 2020, 53: 101987.
32
ZAIB ABBASI A, ALQAHTANI N, TSIOTSOU R H, et al. Esports as playful consumption experiences: Examining the antecedents and consequences of game engagement[J]. Telematics and informatics, 2023, 77: 101937.
33
CHATURVEDI R, VERMA S, DAS R, et al. Social companionship with artificial intelligence: Recent trends and future avenues[J]. Technological forecasting and social change, 2023, 193: 122634.
34
MÜLLER-STEWENS J, SCHLAGER T, HÄUBL G, et al. Gamified information presentation and consumer adoption of product innovations[J]. Journal of marketing, 2017, 81(2): 8-24.
35
MIRANDA S, TRIGO I, RODRIGUES R, et al. Addiction to social networking sites: Motivations, flow, and sense of belonging at the root of addiction[J]. Technological forecasting and social change, 2023, 188: 122280.
36
MISHRA A, SHUKLA A, SHARMA S K. Psychological determinants of users' adoption and word-of-mouth recommendations of smart voice assistants[J]. International journal of information management, 2022, 67: 102413.
37
LIU I L B, CHEUNG C M K, LEE M K O. User satisfaction with microblogging: Information dissemination versus social networking[J]. Journal of the association for information science and technology, 2016, 67(1): 56-70.
38
HSIAO C C, CHIOU J S. The effects of a player's network centrality on resource accessibility, game enjoyment, and continuance intention: A study on online gaming communities[J]. Electronic commerce research and applications, 2012, 11(1): 75-84.
39
SHAMON H, BERNING C. Attention check items and instructions in online surveys with incentivized and non-incentivized samples: Boon or bane for data quality?[J]. Survey research methods, 2020, 14(1): 55-77.
40
PODSAKOFF P M, MACKENZIE S B, PODSAKOFF N P. Sources of method bias in social science research and recommendations on how to control it[J]. Annual review of psychology, 2012, 63: 539-569.
41
HAIR J F, HULT G T M, RINGLE C M, et al. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook[M]. ChamSpringer International Publishing, 2021
42
HULT G T M, HAIR J F Jr, PROKSCH D, et al. Addressing endogeneity in international marketing applications of partial least squares structural equation modeling[J]. Journal of international marketing, 2018, 26(3): 1-21.
43
BAWACK R E, BONHOURE E, KAMDJOUG J R K, et al. How social media live streams affect online buyers: A uses and gratifications perspective[J]. International journal of information management, 2023, 70: 102621.
44
HAIR J F, SARSTEDT M, RINGLE C M, et al. An assessment of the use of partial least squares structural equation modeling in marketing research[J]. Journal of the academy of marketing science, 2012, 40(3): 414-433.
45
PAPPAS I O, WOODSIDE A G. Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing[J]. International journal of information management, 2021, 58: 102310.
46
PAPPAS I O, GIANNAKOS M N, SAMPSON D G. Fuzzy set analysis as a means to understand users of 21st-century learning systems: The case of mobile learning and reflections on learning analytics research[J]. Computers in human behavior, 2019, 92: 646-659.
47
HIRSCHMAN E C, HOLBROOK M B. Hedonic consumption: Emerging concepts, methods and propositions[J]. Journal of marketing, 1982, 46(3): 92.
[1] Mo LI, Bin YANG. From Generative Artificial Intelligence to Artificial General Intelligence: Enabling Innovation Models in Library Knowledge Services [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 50-61.
[2] Ru WU, Ruhan ZHANG, Chenxing DAI, cheng LU. Intellectual Property Literacy Education in University Libraries Based on Innovative Talent Cultivation [J]. Journal of Library and Information Science in Agriculture, 2024, 36(6): 79-87.
[3] LIU Yang, TIAN Huiyi. Application of the EEG Technology in the Field of Library and Information Science: Current Situation and Perspectives [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 63-71.
[4] JIANG Ye, LIU Qiong, LIU Guifeng. Construction of the Cultivation Framework of AI Generated Content on the Information Culture of University Libraries [J]. Journal of Library and Information Science in Agriculture, 2024, 36(4): 36-44.
[5] ZHOU Wenjie. Three Waves of the Organization of Information Resources and the Development of the Statistical Evaluation Systems of Libraries [J]. Journal of Library and Information Science in Agriculture, 2024, 36(3): 21-31.
[6] ZOU Yayi. ChatGPT Strengthens Library Intelligence Services: Opportunities, Challenges and Development Strategies [J]. Journal of Library and Information Science in Agriculture, 2024, 36(2): 71-80.
[7] YANG Lingmei. Discussion on Knowledge and Information Transfer Model for University Libraries Serving Rural Revitalization [J]. Journal of Library and Information Science in Agriculture, 2024, 36(1): 71-82.
[8] ZHANG Jianing, SONG Xigui. ChatGPT and the Its Impact on the Development Trends of the Library Field [J]. Journal of Library and Information Science in Agriculture, 2023, 35(8): 19-29.
[9] XIE Yanjie. Review of Public Library Services to the Elderly in China [J]. Journal of Library and Information Science in Agriculture, 2023, 35(7): 18-26.
[10] FU Rongxin, YANG Xiaohua. Analysis of AIGC Language Models and Application Scenarios in University Libraries [J]. Journal of Library and Information Science in Agriculture, 2023, 35(7): 27-38.
[11] Guo Limin. The Practice and Enlightment of Cloud Collaboration in Libraries: A Case Study of the Mobile Library App of Shanghai Library [J]. Journal of Library and Information Science in Agriculture, 2023, 35(6): 93-102.
[12] JIA Shiwei, YAN Hui. Application and Development of Ethnography in Library and Information Science Research [J]. Journal of Library and Information Science in Agriculture, 2023, 35(6): 4-15.
[13] ZHANG Jingbei, XU Yaping, ZHOU Qiong, CAI Yingchun. Future Learning Centers: A Study on Libraries' Role Reorientation, Function Reconstruction, and Practical Innovations [J]. Journal of Library and Information Science in Agriculture, 2023, 35(6): 43-50.
[14] JIN Jiaqin. Practical Exploration on the Web Scale Discovery Service Based on Micro-Service Architecture [J]. Journal of Library and Information Science in Agriculture, 2023, 35(5): 89-100.
[15] KONG Xianghui, SUN Pu. Medical Data Literacy Education System in Reproducibility Crisis [J]. Journal of Library and Information Science in Agriculture, 2023, 35(4): 70-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!