中文    English

Journal of Library and Information Science in Agriculture ›› 2021, Vol. 33 ›› Issue (7): 12-23.doi: 10.13998/j.cnki.issn1002-1248.20-1196

• Research paper • Previous Articles     Next Articles

Visualization of Topic Graph of Weibo Public Opinion Based on Text Mining

XING Yunfei1, LI Yuhai1,2   

  1. 1. School of Information Management, Central China Normal University, Wuhan 430079;
    2. Hubei Data Governance and Intelligent Decision Research Center, Wuhan 430079
  • Received:2021-01-07 Online:2021-07-05 Published:2021-07-28

Abstract: [Purpose/Significance] Identifying users' concerns from massive comments on Weibo can help the administrative departments to manage the evolution and development trend of public opinion. [Method/Process] Taking Weibo as an example, this paper constructed the topic graph of Weibo public opinion based on the knowledge graph theory and the text mining method. By applying different text similarity, network optimization and text clustering algorithms, the structural characteristics of the graphs were analyzed. [Results/Conclusions] The construction of the topic graph of Weibo public opinion can help managers quickly identify users' concerns. At the same time, it plays an important role in managing users' online texts, predicting the evolution trend, and preventing the diffusion of negative public opinion on social media.

Key words: Weibo public opinion, text mining, topic graph, visualization

CLC Number: 

  • G203
[1] 王晰巍, 邢云菲, 张柳. 社交媒体环境下的网络舆情国内外发展动态及趋势研究[J]. 情报资料工作, 2017(4): 8-16.
WANG X W, XING Y F, ZHANG L.Research on the development trend of network public opinion at home and abroad in the social media environment[J]. Information and documentation services, 2017, 38(4): 6-14.
[2] CHENG Y, HUANG Y, CHAN C M.Public relations, media coverage, and public opinion in contemporary China: Testing agenda building theory in a social mediated crisis[J]. Telematics and informatics, 2017, 34(3): 765-773.
[3] PENG S, YANG A, CAO L, et al.Social influence modeling using information theory in mobile social networks[J]. Information sci-ences, 2017, 379: 146-159.
[4] NI Y, SHI Q, WEI Z.Optimizing influence diffusion in a social network with fuzzy costs for targeting nodes[J]. Journal of ambient intelligence and humanized computing, 2017, 8(5): 819-826.
[5] KIM A, DENNIS A R.Says who is the effects of presentation format and source rating on fake news in social media[J]. MIS quarterly, 2019, 43(3): 1025-1039.
[6] 王曰芬. 大数据环境下社会舆情及其演化分析研究[J]. 情报资料工作, 2016, 37(3): 5-5.
WANG Y F.Research on social public opinion and its evolution under the environment of big data[J]. Information and documentation services, 2016, 37(3): 5-5.
[7] 王晰巍, 邢云菲, 赵丹. 基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博“雾霾”话题为例[J]. 图书情报工作, 2015, 59(7): 14-22.
WANG X W, XING Y F, ZHAO D.The study of network public opin-ion dissemination with social network analysis: Under the mobile environment - A case of "haze" in Sina micro-blog[J]. Library and infor-mation service, 2015, 59(7): 14-22.
[8] 吴青林, 周天宏. 基于话题聚类及情感强度的中文微博舆情分析[J]. 情报理论与实践, 2016, 39(1): 109-112.
WU Q L, ZHOU T H.Public opinion analysis of Chinese microblog based on topic clustering and emotion intensity[J]. Information studies: Theory & application, 2016, 39(1): 109-112.
[9] 周鹏, 蔡淑琴, 石双元. 基于关键词抽取的微博舆情事件内容聚合[J]. 情报杂志, 2014, 33(1): 95-100.
ZHOU P, CAI S Q, SHI S Y.Content aggregation of microblogging public opininon events based on keyword extraction[J]. Journal of intelligence, 2014, 33(1): 95-100.
[10] 廖海涵, 王曰芬, 关鹏. 微博舆情传播周期中不同传播者的主题挖掘与观点识别[J]. 图书情报工作, 2018, 62(19): 77-85.
LIAO H H, WANG Y F, GUAN P.Topic mining and viewpoint recognition of different communicators in the transmission cycle of micro-blog public opinion[J]. Library and information service, 2018, 62(19): 77-85.
[11] 黄微, 朱镇远, 许烨婧. 网络舆情衍进指数构建与实证分析[J]. 图书情报工作, 2019, 63(20): 26-33.
HUANG W, ZHU Z Y, XU Y J.Establishment of public opinion derivative index: an empirical study in China[J]. Library and infor-mation service, 2019, 63(20): 26-33.
[12] 张颖怡, 章成志, 陈果. 基于关键词的学术文本聚类集成研究[J]. 情报学报, 2019, 38(8): 860-871.
ZHANG Y Y, ZHANG C Z, CHEN G.Keyword-based clustering ensembles in academic documents[J]. Journal of the China society for scientific and technical information, 2019, 38(8): 860-871.
[13] 朱晓峰, 陈楚楚, 尹婵娟. 基于微博舆情监测的K-Means算法改进研究[J]. 情报理论与实践, 2014, 37(1): 140-144.
ZHU X F, CHEN C C, YIN C J.Research on improvement of k-means algorithm based on microblog public opinion monitoring[J]. Information studies: Theory & application, 2014, 37(1): 140-144.
[14] 陈雪刚. 基于大数据技术的微博舆情快速自聚类方法研究[J]. 情报杂志, 2017, 36(5): 117-121.
CHEN X G.Research on fast autonomous clustering method of mi-croblog public opinion based on big data technology[J]. Journal of intelligence, 2017, 36(5): 117-121.
[15] GOLD S, RANGARAJAN A, MJOLSNESS E.Learning with preknowledge: Clustering with point and graph matching distance measures[J]. Neural computation, 1996, 8(4): 787-804.
[16] CHUNG W, CHEN H, NUNAMAKER J F.A visual framework for knowledge discovery on the web: an emperical study of business in-telligence exploration[J]. Journal of management information sys-tems, 2005, 21(4): 57-84.
[17] 潘东华, 徐珂珂. 基于专利文献分类码的技术知识图谱绘制方法研究[J]. 情报学报, 2015, 34(8): 866-874.
PAN D H, XU K K.Study on the method of mapping technology networks based on patent classification codes[J]. Journal of the China society for scientific and technical information, 2015, 34(8): 866-874.
[18] 尚小溥, 许吴环, 赵红梅. 中文超声文本结构化与知识网络构建方法研究[J]. 图书情报工作, 2019, 63(16): 112-120.
SHANG X P, XU W H, ZHAO H M.Research on atructure and knowledge network construction of Chinese ultrasonic text[J]. Li-brary and information service, 2019, 63(16): 112-120.
[19] 王丹, 张海涛, 刘嫣. 全景生态视角的微博舆情多维图谱构建研究[J]. 情报学报, 2019, 38(12): 1275-1285.
WANG D, ZHANG H T, LIU Y.Research on the construction of multi-dimensional maps of Weibo's lyrics from the perspective of panoramic ecology[J]. Journal of the China society for scientific and technical information, 2019, 38(12): 1275-1285.
[20] 刘雅姝, 张海涛, 徐海玲. 多维特征融合的网络舆情突发事件演化话题图谱研究[J]. 情报学报, 2019, 38(8): 798-806.
LIU Y S, ZHANG H T, XU H L.Research on evolutionary topic map of internet public opinion with multi-dimensional feature fusion[J]. Journal of the China society for scientific and technical information, 2019, 38(8): 798-806.
[21] QUESTMOBILE. QuestMobile2020年新冠疫情对生活的影响与启示洞察报告[EB/OL].[2020-03-25]. https://www.questmobile.com.cn/research/report-new/87.
[22] 王晰巍, 邢云菲, 王楠阿雪, 等. 新媒体环境下突发事件网络舆情信息传播及实证研究——以新浪微博“南海仲裁案”话题为例[J]. 情报理论与实践, 2017(9): 5-11.
WANG X W, XING Y F, WANG N A X, et al. An empirical study on information dissemination of network public opinion on emergencies under the new media environment[J]. Information studies: Theory & application, 2017(9): 5-11.
[23] 兰月新, 夏一雪, 刘冰月, 等. 网络舆情演化机理多维建模与仿真研究[J]. 现代情报, 2017, 37(8): 57-64.
LAN Y X, XIA Y X, LIU B Y, et al.Research on multidimensional modeling and simulation of network public opinion evolution[J]. Journal of modern information, 2017, 37(8): 57-64.
[1] LI Lanfang, CHEN Yunwei, ZHANG Xue, DENG Yong. Research and Application of Spatial Scientometrics [J]. Journal of Library and Information Science in Agriculture, 2022, 34(7): 27-38.
[2] WANG Feifei, HAN Wenfei, SU Ziyao, YI Xinyue. Exploring the Academic Exchange among Countries along the "The Belt and Road": Bibliometrics Perspective of Highly Cited Papers [J]. Journal of Library and Information Science in Agriculture, 2021, 33(6): 94-106.
[3] LI Jihong, CHEN Ninghui, XU Guizhen, JIANG Shan, WANG Hongjiang. A Visualization Analysis of Library, Information and Documentation Science from the Perspective of the National Social Science Fund Programs [J]. Journal of Library and Information Science in Agriculture, 2021, 33(5): 83-92.
[4] ZHANG Yuyao, CHEN Yuanyuan. Discourse Cognition and Construction Based on Text Mining: Taking the White House News Text in the Field of Artificial Intelligence and 5G as an Example [J]. Journal of Library and Information Science in Agriculture, 2021, 33(4): 35-44.
[5] LI Lei, SONG JianNing, SONG TianHua. Technology Forecasting Based on Topic Identification of Online Innovation Communities and S-Curve [J]. Journal of Library and Information Science in Agriculture, 2021, 33(4): 45-57.
[6] XU Yongle, CHEN Yuanyuan, YANG Tingting, WAN Xiangli. Comparative Analysis of the Research on the Influence of Chinese and International Think Tanks [J]. Journal of Library and Information Science in Agriculture, 2021, 33(11): 50-62.
[7] WANG Yihan, YE Yuming. Review on the Research of Open Science at Home and Abroad in Recent Ten Years [J]. Journal of Library and Information Science in Agriculture, 2021, 33(10): 20-35.
[8] SUN Tan, DING Pei, HUANG Yongwen, XIAN Guojian. Review on the Application and Development Strategies of Text Mining in Agriculture Knowledge Services [J]. Journal of Library and Information Science in Agriculture, 2021, 33(1): 4-16.
[9] PENG Xia, LIU Min, YANG Li, FAN Shan. The Geographical Distribution and Causes of the Female Writers during Ming and Qing Dynasties in Spatial Horizon: A Case Study of Songjiang Prefecture [J]. Journal of Library and Information Science in Agriculture, 2020, 32(9): 31-38.
[10] LIN Hai, GU Tinghua, WU Yubing. Development Context and Characteristics of Social Commerce: Review and Prospect Based on Visualization Technology [J]. Journal of Library and Information Science in Agriculture, 2020, 32(5): 31-44.
[11] CAO Qi. Visual Modeling of Keyword Dimension Reduction in Double First-Class University Funds Based on t-SNE Algorithm [J]. Journal of Library and Information Science in Agriculture, 2020, 32(2): 47-57.
[12] ZHAO Xueqin, WANG Qingqing. An Investigation into the Travel Information Needs of Online Q&A Platform Users: Taking Tuniu Q&A Community as an Example [J]. Journal of Library and Information Science in Agriculture, 2020, 32(10): 47-55.
[13] WANG Li, SHEN Xiang. Research of Topics Discovery and Tech Evolution Based on Text Preprocessed LDA Model [J]. Agricultural Library and Information, 2019, 31(4): 19-28.
[14] WEI Xiaoping. Deep Development and Utilization of Digital Ancient Books under the Background of Digital Humanities [J]. , 2018, 30(9): 106-110.
[15] ZHOU Na, LI Xiuxia, GAO Dan, JIAO Hong. Research on Knowledge Combination Analysis Based on Latent Topics—An Example of Communication [J]. , 2018, 30(9): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!