中文    English

Journal of Library and Information Science in Agriculture ›› 2020, Vol. 32 ›› Issue (2): 47-57.doi: 10.13998/j.cnki.issn1002-1248.2019.12.16-1097

• Research paper • Previous Articles     Next Articles

Visual Modeling of Keyword Dimension Reduction in Double First-Class University Funds Based on t-SNE Algorithm

CAO Qi   

  1. Greysh Academy of Information Sciences, Hengqin New Area, Zhuhai City, Zhuhai 519030
  • Received:2019-12-16 Online:2020-02-05 Published:2020-02-25

Abstract: [Purpose/Significance] The National Natural Science Foundation's project funding is an important indicator of scientific research capabilities. Analysis of the data of the establishment of the research funds of double first-class universities is helpful to provide strategic support for university construction. [Purpose/Significance] This article studies the keyword data of the National Natural Science Foundation of China from 1998 to 2017. At first we preprocess double first-class universities' data, and then use the t-SNE algorithm in MATLAB to reduce the dimension of the data and visualize the results. This paper models from the time dimension and the unit-dependent dimension, and studies the keyword distribution of double first-class universities' projects in the past 20 years. [Results/Conclusions] The method in this paper is more intuitive than the traditional method based on structured analysis and provides a reference for the formulation of Chinese universities' construction strategies. In addition, other scholars can further model and program based on this research for such purposes as interactive visual modeling and fast and positioning of massive project data to improve scientific research efficiency.

Key words: research fund, data mining, scientific and technological intelligence analysis, network visualization, t-SNE

CLC Number: 

  • G350
[1] 万华. 基于项目论文引文关联的协同研究关系分析——以国家自然科学基金图书情报类研究项目为例[J].情报科学,2013(6):53-59.
[2] 范云满,马建霞,刘静.国家自然科学基金的评估指标体系与指标的分析研究[J].图书情报工作,2013,57(16):100-106.
[3] 刘多,宋敏,谢亚南等.2009—2015年国家自然科学基金资助产出ESI高被引论文分析[J].中国科学基金,2017(4):353-358.
[4] 冯磊,朱宇华,吕相征等.国家自然科学基金资助产出SCI医药卫生论文的计量分析[J].科技与出版,2017(3):112-118.
[5] 邓方,宋苏,刘克等.国家自然科学基金自动化领域数据分析与研究热点变化[J].自动化学报,2018,44(02):377-384.
[6] 陈挺,李国鹏,王小梅.基于t-SNE降维的科学基金资助项目可视化方法研究[J].数据分析与知识发现,2018,2(08):1-9.
[7] MEJIA C,KAJIKAWA Y.Using acknowledgement data to characterize funding organizations by the types of research sponsored: the case of robotics research[J].Scientometrics,2018,114(3):883-904.
[8] LI K, YAN E.Are NIH-funded publications fulfilling the proposed research? An examination of concept-matchedness between NIH research grants and their supported publications[J]. Journal of Informetrics,2019,13(1):226-237.
[9] YANG C, HUANG C, SU J.An improved SAO network-based method for technology trend analysis: A case study of graphene[J]. Journal of
Informetrics,2018,12(1):271-286.
[10] ABRISHAMI A, ALIAKBARY S.Predicting citation counts based on deep neural network learning techniques[J]. Journal of Informetrics
2019,13(2):485-499.
[11] FENG F, ZHANG L, DU Y, et al.Visualization and quantitative study in bibliographic databases: A case in the field of university-industry cooperation[J]. Journal of Informetrics,2015,9(1):118-134.
[12] 袁润,李莹,王琦等. 用R语言分析关键词集共现网络研究[J].现代情报,2018,38(07):88-94.
[13] LI K, YAN E, FENG Y.How is R cited in research outputs? Structure, impacts, and citation standard[J].Journal of Informetrics, 2017
11(4):989-1002.
[14] 张永安,马昱.基于R语言的区域技术创新政策量化分析[J].情报杂志,2017,36(03):113-118.
[15] 张然. “双一流”背景下加强国家自然科学基金组织申报工作探讨——以吉林大学电子科学与工程学院为例[J].办公室业务
2019,306(1):186-187.
[16] 张品慧,张瑜婷,赵星.科学基金对“双一流”建设学科的前期资助研究(2012-2016)[J].图书与情报,2018,182(4):10-16.
[17] 马晓萌,徐峰.双一流高校自然科学基金面上项目资助特点探析[J].情报工程,2018,4(06):63-75.
[18] tsne[EB/OL].[2019-06-05].https://github.com/greysh/paper-tsne.
[19] HU K, WU H, QI K, et al.A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2
Vec model[J].Scientometrics,2018,114(3):1031-1068.
[20] CHEN G, XIAO L.Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods[J].Journal of Informetrics,2016,10(1):212-223.
[1] WANG Ying. Semantic Models for the Content of Scientific Literature [J]. Journal of Library and Information Science in Agriculture, 2020, 32(8): 12-24.
[2] HOU Liang, WANG Xindong, GAO Qian, LIU Suying. The Developing of Agricultural Big Data Mining System Based on Hadoop [J]. , 2018, 30(7): 19-21.
[3] LI Na. Research on the Construction of Library Readers' Reading Community Based on Data Mining [J]. , 2018, 30(6): 92-95.
[4] ZHANG Guanglei. Application of Multimedia Data Mining Technology in the Development and Utilization of Digital Library Collection Resource [J]. , 2018, 30(3): 61-64.
[5] SUN Sumin. Research on Personalized Library System Based on Distributed Architecture [J]. , 2018, 30(3): 27-31.
[6] ZHANG Dongmei. Research on the Application of Data Mining in University Library's Reading Promotion [J]. , 2018, 30(1): 143-145.
[7] XIE Fahui. Design and Implementation of Personalized New Books Recommendation System [J]. , 2017, 29(7): 52-56.
[8] CHEN Jingrong. Study on the data Mining Technology in Library Borrowing Analysis System [J]. , 2017, 29(2): 69-72.
[9] FENG Na. A Brief Discussion of University Library’s Book Procurement Plan Based on Data Mining [J]. , 2016, 28(4): 112-114.
[10] WU Yang-yan. The Application of Data Mining in Library Periodical Management [J]. , 2016, 28(1): 193-195.
[11] Qu Yan-yan. The Correlation Factors Research of foreign Books Utilization rate Based on data Mining [J]. , 2016, 28(1): 72-75.
[12] WANG Hong. The Application of data Mining in Digital Library [J]. , 2016, 28(1): 39-41.
[13] LI Xu, DAI Xiao-pen, HUANG Yao, HU Xiu-qing. A Study of Reader Group Behavior Model Based on Data Mining [J]. , 2015, 27(9): 10-13.
[14] LI Ying-chun. Library Information Management of Big Data Environment [J]. , 2015, 27(6): 142-144.
[15] TANG Hui. Application Research on data Mining in Library Knowledge Consulting [J]. , 2015, 27(2): 91-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!