Journal of Library and Information Science in Agriculture ›› 2023, Vol. 35 ›› Issue (7): 52-62.doi: 10.13998/j.cnki.issn1002-1248.23-0355
Previous Articles Next Articles
LIU Nanzhu1,2, CUI Yunpeng1,2,*, WANG Mo1,2
CLC Number:
[1] 张波. 农史研究法[M]. 咸阳: 西北农林科技大学出版社, 2019. ZHANG B.Agricultural history research method[M]. Xianyang: Northwest A&F University Press, 2019. [2] 葛小寒. 文献、史料与知识——古农书研究的范式及其转向[J]. 中国农史, 2019, 38(2): 12-25. GE X H.Text, history date and knowledge - The paradigms of ancient agricultural books' research in agricultural history of China[J]. Agricultural history of China, 2019, 38(2): 12-25. [3] 何凡能, 李柯, 刘浩龙. 历史时期气候变化对中国古代农业影响研究的若干进展[J]. 地理研究, 2010, 29(12): 2289-2297. HE F N, LI K, LIU H L.The influence of historical climate change on agriculture in ancient China[J]. Geographical research, 2010, 29(12): 2289-2297. [4] 曾雄生. 也释“白田”兼“水田”——与辛德勇先生商榷[J]. 自然科学史研究, 2012, 31(2): 201-208. ZENG X S.An alternative interpretation of Baitian (white field) and Shuitian (water field): Discussion with Mr. Xin Deyong[J]. Studies in the history of natural sciences, 2012, 31(2): 201-208. [5] TANG M, WANG X, HOU K, et al.Carbon and nitrogen stable isotope of the human bones from the Xiaonanzhuang cemetery, Jinzhong, Shanxi: A preliminary study on the expansion of wheat in ancient Shanxi, China[J]. Acta anthropologica sinica, 2018, 37(2): 318-30. [6] 刘志国, 徐旺生. 《齐民要术》的盐史信息考探[J]. 中国科技史杂志, 2021, 42(1): 91-99. LIU Z G, XU W S.The information on salt history in the qimin Yaoshu[J]. The Chinese journal for the history of science and technology, 2021, 42(1): 91-99. [7] ZHOU X Y, ZHU L, SPENGLER R N, et al.Water management and wheat yields in ancient China: Carbon isotope discrimination of archaeological wheat grains[J]. The holocene, 2021, 31(2): 285-293. [8] CHEN S C.Exploring the use of electronic resources by humanities scholars during the research process[J]. Electron libr, 2019, 37: 240-254. [9] WANG S Y, CUI D A, LV Y N, et al.Cangpu oral liquid as a possible alternative to antibiotics for the control of undifferentiated calf diarrhea[J]. Frontiers in veterinary science, 2022, 9: 879857. [10] XIA X Y, LIN Z C, SHAO K P, et al.Combination of white tea and peppermint demonstrated synergistic antibacterial and anti-inflam-matory activities[J]. Journal of the science of food and agriculture, 2021, 101(6): 2500-2510. [11] WANG N, LIU X, LI J G, et al.Antibacterial mechanism of the synergistic combination between streptomycin and alcohol extracts from the Chimonanthus salicifolius S. Y. Hu. leaves[J]. Journal ofethnopharmacology, 2020, 250: 112467. [12] 李明杰, 陈梦石, 孟彬. 中国古代科技文献整理出版七十年回望(1949-2019)[J]. 出版科学, 2019, 27(5): 22-29. LI M J, CHEN M S, MENG B.Review on the collation of ancient Chinese scientific and technological documents in the past 70 years[J]. Publishing journal, 2019, 27(5): 22-29. [13] 曹玲, 常娥, 薛春香. 农史研究的新工具——中国农业遗产信息平台的设计与构建[J]. 中国农史, 2006, 25(1): 127-133. CAO L, CHANG E, XUE C X.A new tool of agricultural history research - Design and construction of "agricultural inheritance information database"[J]. Agricultural history of China, 2006, 25(1): 127-133. [14] LIU S C, XIAO F, OU W W, et al. Cascade ranking for operational e-commerce search[J]. arXiv:1706.02093, 2017. [15] PEDERSEN J.Query understanding at being[R]. Invited Talk: SIGIR, 2010. [16] FAN Y X, XIE X H, CAI Y Q, et al.Pre-training methods in information retrieval[M]. Beijing: Now Publishers, 2022. [17] CHEN R C, GALLAGHER L, BLANCO R, et al.Efficient cost-aware cascade ranking in multi-stage retrieval[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 445-454. [18] LIANG D, XU P, SHAKERI S, et al.Embedding-based zero-shot retrieval through query generation[J]. arXiv preprint arXiv:200910270, 2020. [19] FURNAS G W, LANDAUER T K, GOMEZ L M, et al.The vocabu-lary problem in human-system communication[J]. Communications of the ACM, 1987, 30(11): 964-971. [20] ZHAO L, CALLAN J.Term necessity prediction[C]// Proceedings of the 19th ACM international conference on Information and knowledge management. New York: ACM, 2010: 259-268. [21] LI H, XU J.Semantic matching in search[J]. Foundations and trends in information retrieval, 2014, 7(5): 343-469. [22] LAVRENKO V, CROFT W B.Relevance based language models[C]//Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2001: 120-127. [23] LESK M E.Word-word associations in document retrieval systems[J]. American documentation, 1969, 20(1): 27-38. [24] QIU Y G, FREI H P.Concept based query expansion[C]// Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1993: 160-169. [25] XU J X, CROFT W B.Quary expansion using local and global document analysis[J]. ACM SIGIR forum, 2017, 51(2): 168-175. [26] AGIRRE E, ARREGI X, OTEGI A.Document expansion based on WordNet for robust IR[C]. Posters: In Proceedings of COLING 2010,2010: 9-17. [27] EFRON M, ORGANISCIAK P, FENLON K.Improving retrieval of short texts through document expansion[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2012: 911-920. [28] LIU X Y, CROFT W B.Cluster-based retrieval using language models[C]// Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2004: 186-193. [29] GAO J F, NIE J Y, WU G Y, et al.Dependence language model for information retrieval[C]// Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2004: 170-177. [30] GUO J F, CAI Y Q, FAN Y X, et al.Semantic models for the first-stage retrieval: A comprehensive review[J]. ACM transactions on information systems, 40(4)1-42. [31] BOJANOWSKI P, GRAVE E, JOULIN A, et al.Enriching word vectors with subword information[J]. Transactions of the association for computational linguistics, 2017, 5: 135-146. [32] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]. arXiv:1310.4546, 2013. [33] PENNINGTON J, SOCHER R, MANNING C.Glove: Global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. [34] DAI Z Y, CALLAN J.Context-aware sentence/passage term importance estimation for first stage retrieval[J]. arXiv: 1910.10687, 2019. [35] NOGUEIRA R, YANG W, LIN J, et al.Document expansion by query prediction[J]. ArXiv: 1904.08375, 2019. [36] GILLICK D, PRESTA A, TOMAR G S. End-to-end retrieval in continuous space[J]. arXiv:1811.08008, 2018. [37] JANG K R, KANG J M, HONG G, et al.UHD-BERT: Bucketed ultra-high dimensional sparse representations for full ranking[J]. 2arXiv: 2104.07198, 2021. [38] KHATTAB O, ZAHARIA M.ColBERT: Efficient and effective passage search via contextualized late interaction over BERT[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 39-48. [39] ZAMANI H, DEHGHANI M, CROFT W B, et al.From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 497-506. [40] BARONI M, DINU G, KRUSZEWSKI G.Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. [41] BENGIO Y, DUCHARME R, VINCENT P, et al.A neural probabilistic language model[J]. J Mach learn res, 2003, 3: 1137-1155. [42] QIU X P, SUN T X, XU Y G, et al.Pre-trained models for natural lan-guage processing: A survey[J]. Science China technological sciences, 2020, 63(10): 1872-1897. [43] 王东波, 刘畅, 朱子赫, 等. SikuBERT与SikuRoBERTa:面向数字人文的《四库全书》预训练模型构建及应用研究[J]. 图书馆论坛, 2022, 42(6): 31-43. WANG D B, LIU C, ZHU Z H, et al.Construction and application of pre-trained models of siku Quanshu in orientation to digital humanities[J]. Library tribune, 2022, 42(6): 31-43. [44] WANG P Y, REN Z C.The uncertainty-based retrieval framework for ancient Chinese CWS and POS[C]. Proceedings of the Second Workshop on Language Technologies for Historical and Ancient Languages, 2022: 164-8. [45] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [46] 车万翔, 郭江, 崔一鸣. 自然语言处理: 基于预训练模型的方法[M]. 北京: 电子工业出版社, 2021. CHE W X, GUO J, CUI Y M.Natural language processing[M]. Beijing: Publishing House of Electronics Industry, 2021. [47] 邵浩, 刘一烽. 预训练语言模型[M]. 北京: 电子工业出版社, 2021. SHAO H, LIU Y F. Pre-training language model[M]. Beijing: Publishing House of Electronics Industry, 2021. [48] REIMERS N, GUREVYCH I.Sentence-BERT: Sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Confer-ence on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. [49] GAO T Y, YAO X C, CHEN D Q.SimCSE: Simple contrastive learning of sentence embeddings[J]. arXiv: 2104.08821, 2021. |
|