中文    English

Journal of Library and Information Science in Agriculture ›› 2022, Vol. 34 ›› Issue (3): 37-50.doi: 10.13998/j.cnki.issn1002-1248.21-0574

Previous Articles     Next Articles

Research and Practice on Association of Scientific Data and Scientific Literature Oriented to Knowledge Service of Agricultural Industry

CHAI Miaoling1,2,3, ZOU Yixing4, TAN Rongzhi3,*, ZENG Yi5, REN Yunyue6   

  1. 1. Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu 610041;
    2. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190;
    3. TAN Rongzhi, Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences, Chengdu 610041;
    4. Sichuan Rural Science and Technology Development Center, Chengdu 610042;
    5. Business school, City University of Hong Kong, Hong Kong 999077;
    6. School of Public Administration, Sichuan University, Chengdu 610065
  • Received:2021-07-23 Online:2022-03-05 Published:2022-04-27

Abstract: [Purpose/Significance] In order to solve the problems of incomplete data chain and insufficient data support decision-making ability in agricultural science and technology management, this paper put forward a set of industrial knowledge service model based on the needs of scientific management in agriculture, and completed the key part of the model, the research and practice on association of scientific data and scientific literature. This study will provide theoretical and practical cases for library and information science (LIS) research institutions to serve agricultural science and technology management and industrial development. [Method/Process] Firstly, this paper reviews the current situation of research into knowledge service and data association. Secondly, based on the analysis of characteristics of industrial requirements and data management life cycle in agricultural science and technology management, the paper constructed a knowledge service model with industrial characteristics. Then, based on the agricultural science data and scientific literature of Sichuan Province, the study designed and constructed an ontology model and system based on industrial elements. [Results/Conclusions] 20 data types, 24 284 scientific data entries and related scientific literature were integrated. And we established multi-source heterogeneous data association in 1 system platform and 1 sub-platform with Chinese and English data. The research results will provide reference for cross-field cooperation between agricultural science and technology management and LIS research, and cross-departmental sharing of scientific data and scientific literature.

Key words: agricultural industry, scientific data, scientific literature, data association, ontology, industrial chain, big data

CLC Number: 

  • G353.1
[1] 任俊为. 知识经济与图书馆的知识服务[J]. 图书情报知识, 1999(1): 3-5.
REN J W.Knowledge economy and library knowledge service[J]. Documentation, information & knowledge, 1999(1): 3-5.
[2] 张晓林. 走向知识服务: 寻找新世纪图书情报工作的生长点[J]. 中国图书馆学报, 2000(5): 30-35.
ZHANG X L.Towards knowledge service: Seeking development opportunities for library and information services in the 21st century[J]. Journal of library science in China, 2000(5): 30-35.
[3] 李霞, 樊治平, 冯博. 知识服务的概念、特征与模式[J]. 情报科学, 2007(10): 1584-1587.
LI X, FAN Z P, FENG B.The concept, characteristics and model of knowledge-intensive services[J]. Information science, 2007(10): 1584-1587.
[4] 柯平, 邹金汇. 后知识服务时代的图书馆转型[J]. 中国图书馆学报, 2019, 45(1): 4-17.
KE P, ZOU J H.Library transformation in the post-knowledge service era[J]. Journal of library science in China, 2019, 45(1): 4-17.
[5] 刘健宏, 池敏青, 吴越. 大数据背景下农业分学科知识服务模式研究[J]. 台湾农业探索, 2018(3): 77-81.
LIU J H, CHI M Q, WU Y.Knowledge service model of agricultural discipline under large data background[J]. Taiwan agricultural research, 2018(3): 77-81.
[6] 王丹阳. 农业知识服务模式探究[D]. 北京: 北京印刷学院, 2019.
WANG D Y.Research on knowledge service model of agriculture[D]. Beijing: Beijing institute of graphic communication, 2019.
[7] 柏永青, 杨雅萍, 孙九林. 国内外科学数据管理办法研究进展[J]. 农业大数据学报, 2019, 1(3): 5-20, 4.
BO Y Q, YANG Y P, SUN J L.Advances in the study of domestic and foreign scientific data management methods[J]. Journal of agricultural big data, 2019, 1(3): 5-20, 4.
[8] 陈娉婷, 官波, 沈祥成, 等. 大数据时代开放式农业信息知识库构建研究[J]. 东北农业科学, 2018, 43(5): 60-64.
CHEN P T, GUAN B, SHEN X C, et al.Studies on the construction of open repository of agricultural information in big data era[J]. Journal of northeast agricultural sciences, 2018, 43(5): 60-64.
[9] SGOUROPOULOU C, KOUTOUMANOS A.Building metadata architectures: A case for e-research[J]. International journal of metadata semantics & ontologies, 2014, 9(4): 275-288.
[10] AYDIN S, AYDIN M N.Semantic and syntactic interoperability for agricultural open-data platforms in the context of IoT using crop-specific trait ontologies[J]. Applied ENCES, 2020, 10(13): 1-27.
[11] WISNUBHADRA I, ADITHAMA S P, BAHARIN S S K, et al. Agriculture spatiotemporal business intelligence using open data integration[C]//2019 international seminar on research of information technology and intelligent systems(ISRITI), 2019.
[12] ZHANG M, LI Z, LI F.Discussion on key technologies in forestry fundamental scientific information cloud service platform[C]//Green computing & communications, IEEE, 2013.
[13] MARTIN C, CADIOU C, EMMANUELLE JANNES-OBER.Data management: New tools, new organization, and new skills in a French research institute[J]. LIBER quarterly, 2017, 27(1): 73-88.
[14] ENAYAT, RAJABI, SALVADOR, et al. A linked and open dataset from a network of learning repositories on organic agriculture[J]. British journal of educational technology, 2015.
[15] FERRAG M A, SHU L, YANG X, et al.Security and privacy for green IoT-Based agriculture: Review, blockchain solutions, and challenges[J]. IEEE access, 2020, 99.
[16] 科学数据共享工程[EB/OL]. [2021-10-08]. http://www.most.gov.cn/ztzl/kjzg60/kjzg60hhcj/kjzg60jcyj/200909/t20090911_72832.html.
The construction strategy of national scientific data sharing program[EB/OL]. [2021-10-08].http://www.most.gov.cn/ztzl/kjzg60/kjzg60hhcj/kjzg60jcyj/200909/t20090911_72832.html.
[17] 贺玲玉. 基于关联数据的农业信息资源整合研究[D]. 武汉: 华中师范大学, 2014.
HE L Y.Research on the integration of agricultural information resources based on the linked data[D]. Wuhan: Central China normal university, 2014.
[18] 王剑, 黄朝光. 海量农业科学数据存储体系架构与方法研究[J]. 广东农业科学, 2015, 42(2): 152-156.
WANG J, HUANG C G.Research on storage architecture and method for big agricultural scientific data[J]. Guangdong agricultural sciences, 2015, 42(2): 152-156.
[19] 陆丽娜, 王萍, 于啸. 农业科学数据监管平台构建研究[J]. 图书情报工作, 2017, 61(10): 68-73.
LU L N, WANG P, YU X.Research on the construction of agriculture data curation platform[J]. Library and information service, 2017, 61(10): 68-73.
[20] 赵瑞雪, 李娇, 张洁, 等. 多场景农业专业知识服务系统构建研究[J]. 农业图书情报学报, 2020, 32(1): 4-11.
ZHAO R X, LI J, ZHANG J, et al.Construction of multi-scenario agricultural knowledge service system[J]. Journal of library and information science in agriculture, 2020, 32(1): 4-11.
[21] 赵华, 王健. 科学数据出版现状及对中国农业科学数据出版的启示[J]. 农业展望, 2016, 12(8): 53-57.
ZHAO H, WANG J.Circumstance on scientific data publication and its inspiration to China's agricultural scientific data publication[J]. Agricultural outlook, 2016, 12(8): 53-57.
[22] 彭秀媛, 王枫, 周国民. 面向重用的农业科学数据共享模式研究[J]. 农业经济, 2019(1): 87-89.
PENG X Y, WANG F, ZHOU G M.Research on reuse-oriented data sharing model for agricultural science[J]. Agricultural economy, 2019(1): 87-89.
[23] 科学技术[EB/OL]. [2020-07-29] http://www.stats.gov.cn/tjsj/zbjs/201912/t20191202_1713041.html.
Science and technology[EB/OL]. [2020-07-29] http://www.stats.gov.cn/tjsj/zbjs/201912/t20191202_1713041.html.
[24] TONY H, STEWART T, KRISTIN T.《第四范式: 数据密集型科学发现》[M]. 北京: 科学出版社, 2012
TONY H, STEWART T, KRISTIN T.The fourth paradigm: Data-intensive scientific discovery[M]. Beijing: Science press, 2012
[25] 黄筱瑾. 基于内容特征的科学数据与科技文献关联研究[J]. 现代情报, 2018, 38(1): 56-59
HUANG X J.Link study of scientific data and scientific literature based on content features[J]. Journal of modern information, 2018, 38(1): 56-59
[26] 鲜国建. 农业科技多维语义关联数据构建研究[D]. 北京: 中国农业科学院, 2013.
XIAN G J.Research on construction of multidimensional semantic linked data of agricultural science and technology[D]. Beijing: Chinese academy of agricultural sciences, 2013.
[27] 李帆. 面向高铁的数据压缩及趋势关联分析算法研究[D]. 西安:西安理工大学, 2016.
LI F.Research on data compression and trend association analysis algorithm for high-speed train[D]. Xi'an: Xi'an university of technology, 2016.
[28] 张鑫, 文奕, 杨宁, 等. 基于引文探针的文献与数据的关联算法与应用——以高能物理领域为例[J]. 情报理论与实践, 2019, 42(10): 151-156.
ZHANG X, WEN Y, YANG N, et al.A citation-based association algorithm between scientific literature and data: A case study of high energy physics[J]. Information studies: Theory & application, 2019, 42(10): 151-156.
[29] 丁文姚, 李健, 韩毅. 我国图书情报领域期刊论文的科学数据引用特征研究[J]. 图书情报工作, 2019, 63(22): 118-128.
DING W Y, LI J, HAN Y.Research on the characteristics of scientific data citation in journal articles in library and information science in China[J]. Library and information service, 2019, 63(22): 118-128.
[30] 柴苗岭, 黄琳, 任运月. 重要开放农业科学数据资源建设现状综述[J]. 农业图书情报学报, 2020, 32(10): 25-34.
CHAI M L, HUANG L, REN Y Y.A review of construction of major agricultural open scientific data resources[J]. Journal of library and information science in agriculture, 2020, 32(10): 25-34.
[1] CHEN Shuxian, LIU Guifeng, LIU Qiong. Research Progress and Implementation of FAIR Principles for Scientific Data Management [J]. Journal of Library and Information Science in Agriculture, 2022, 34(8): 30-41.
[2] CHANG ZhiJun, XU LiYuan, YU QianQian, ZHANG JianYong, WANG YongJi. Scientific and Technical Literature Data Management System Based on Life Cycle Model [J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 36-49.
[3] SONG Kai, RAN Congjing. Digital Technologies Aid Intelligent Epidemic Prevention and Control: Community-based Rapid Detection and Tracking Platform of COVID-19 [J]. Journal of Library and Information Science in Agriculture, 2022, 34(5): 92-101.
[4] SONG Shanshan, BAI Wenlin. A Review of Big Data Governance Research in China [J]. Journal of Library and Information Science in Agriculture, 2022, 34(4): 4-17.
[5] FAN Zhixuan, WANG Jian, SA Xu, ZHANG Guilan. Structure-Utility of Descriptive Information of Agricultural Scientific Data from the Perspective of Users [J]. Journal of Library and Information Science in Agriculture, 2022, 34(10): 57-69.
[6] FENG Maolin, DONG Jianfeng. Construction of the Rural Information Service Platform under Big Data Environment [J]. Journal of Library and Information Science in Agriculture, 2021, 33(7): 63-71.
[7] SUN Tan, HUANG Yongwen, XIAN Guojian, CUI Yunpeng, LIU Juan. Considerations for the Development of Agricultural Informatization Driven by a New Generation of Information Technologies [J]. Journal of Library and Information Science in Agriculture, 2021, 33(3): 4-15.
[8] MENG Yintao, ZHAO Leixia, YU Qianqian. Scientific Data Evaluation Index System for Scientific Data Preservation [J]. Journal of Library and Information Science in Agriculture, 2021, 33(12): 48-59.
[9] YE Xinyou, ZHANG Lulu, KONG Chengguo, ZHANG Qun. Evaluation of Scientific Data Literacy Competency for Postgraduates in China and Construction of Data Literacy Education System [J]. Journal of Library and Information Science in Agriculture, 2021, 33(11): 63-73.
[10] CAO Shujin, YUE Wenyu. Research on Library User Profiles for Precision Services [J]. Journal of Library and Information Science in Agriculture, 2021, 33(10): 4-19.
[11] CHEN Tao, SHAN Rongrong, LI Hui. Semantic Annotation of Image Resources in Digital Humanities [J]. Journal of Library and Information Science in Agriculture, 2020, 32(9): 6-14.
[12] ZHAO Shenghui, HU Ying. The Multi-lingual Knowledge Fusion Framework for Digital Humanities in Tibetan Studies Humanities in Tibetan Studies [J]. Journal of Library and Information Science in Agriculture, 2020, 32(9): 39-49.
[13] WANG Ying. Semantic Models for the Content of Scientific Literature [J]. Journal of Library and Information Science in Agriculture, 2020, 32(8): 12-24.
[14] LIU Yiming, JIANG Xinyu, DUAN Yizhi. Block Chain Technology: Promoting the Digital Resource Construction of University Library in Big Data Era [J]. Journal of Library and Information Science in Agriculture, 2020, 32(6): 15-22.
[15] MA Xiaoyue, XUE Pengzhen. The Cross-integration Development Path of Information Science and Communication Science in the Background of Artificial Intelligence and Big Data [J]. Journal of Library and Information Science in Agriculture, 2020, 32(3): 37-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!