中文    English

Journal of library and information science in agriculture

   

Determinants and Configurations of Open Scientific Data Policy Diffusion in China

CHI Yuzhuo, ZHANG Bing   

  1. School of Information Management, Heilongjiang University, Harbin 150080
  • Received:2025-06-25 Online:2025-10-17

Abstract:

[Purpose/Significance] Open scientific data policies play a pivotal role in promoting the open sharing, unrestricted access to, and reuse of scientific data, thereby enhancing research efficiency and driving innovation. Despite their significance, research on the diffusion of these policies has predominantly focused on policy formulation, often neglecting the critical aspect of policy adoption and implementation at the local government level. This study aims to addres this gap by comprehensively examining the factors that influence the adoption of open scientific data policies by prefecture-level governments in China. The research was motivated by the need to understand how these policies spread across different regions, as well as the underlying mechanisms that facilitate or hinder their adoption. In doing so, the study expands the existing knowledge base by shedding light on the dynamics of policy diffusion in the context of open scientific data, a relatively under-explored area compared to other policy domains. [Method/Process] To achieve its objectives, the study employed an integrated research methodology. First, it utilized a policy diffusion model, adapted from the well-established Berry model, to theoretically frame the research. This model was enhanced by incorporating insights from a comprehensive literature review, which helps identify key internal and external factors influencing policy diffusion. Second, the study employed the event-history analysis to empirically test these factors using data from 286 Chinese cities over the period from 2018 to 2022. This method allows for the examination of the temporal sequence of policy adoption and the identification of causal relationships between the influencing factors and policy diffusion. Finally, a fuzzy-set qualitative comparative analysis (fsQCA) was applied to refine the understanding of multiple causal configurations that lead to successful policy adoption. This approach captures the complexity and interdependence of factors in policy diffusion processes, offering a nuanced perspective that goes beyond traditional statistical methods. [Results/ [Conclusions] The study identified four primary pathways for the diffusion of open scientific data policies in China: resource-driven, organization-and-human-capital-led, multi-stakeholder collaborative, and technology-guided. The resource-driven pathway emphasizes the significance of research funding and the establishment of professional organizations in facilitating policy adoption. The organization-and-human-capital-led pathway highlights the role of government official mobility and a skilled workforce in driving policy diffusion. The multi-stakeholder collaborative pathway underscores the importance of coordinated efforts among various stakeholders, including government agencies, research institutions, and industry partners. Last, the technology-guided pathway focuses on innovation capacity and professional management as key drivers of policy adoption. The findings reveal a heavy reliance on administrative measures in driving policy diffusion, which may lead to unintended consequences such as policy sustainability issues and a lack of alignment with local needs. Therefore, local governments are encouraged to adopt tailored diffusion strategies that consider their specific contexts and resource endowments. Future research should explore the performance of these policies in achieving their intended outcomes and conduct comparative studies across different regions to enhance the generalizability of the findings.

Key words: open scientific data, open scientific data policy, policy diffusion model, qualitative comparative analysis

CLC Number: 

  • G259.2

Table 1

Variable measurement"

变量 测量方法 来源文献

因变量

政策扩散

是否采纳开放科学数据政策,采纳为1,不采纳为0 自定义

自变量

科研资金

前一年的地方科研支出/地方财政一般预算内支出/% 夏海利、朱诗晗[35]
科研人员 前一年科研、技术服务和地质勘查业从业人数/前一年的地区总就业从业人口/% 自定义
财政依赖 (地方财政一般预算内支出-地方财政一般预算内收入)/地方财政一般预算内支出/% 吴金鹏、韩啸[25]
创新能力 前一年该地区国家专利授权数量/个 马海群[36]
人才储备 前一年该地区本专科在校人数/人 吴峰[37]
专业组织 是否建立专门的数据管理机构,建立记为1,未建立记为0 黄平平[38]
官员流动 扩散期间主责官员是否调任,是记为1,否记为0 自定义
府际模仿 对于某地区而言,在前一年已采纳开放科学数据政策累计数量占全国所有省总数比例 自定义
上级压力 直属上级发布了相关政策文件,赋值为1,否则赋值为0 自定义

Table 2

Data sources"

变量 指标来源
因变量 政策采纳 各地市级政府门户网站、北大法宝数据库
自变量 科研资金 《中国城市统计年鉴》
科研人员 《中国城市统计年鉴》
财政依赖 《中国城市统计年鉴》
创新能力 《中国城市统计年鉴》
人才储备 《中国城市统计年鉴》
专业组织 各地市政府网站、北大法宝数据库
官员流动 地方政府官网公告、地市级官员任职数据库
府际模仿 地市/省级政府门户网站、北大法宝数据库
省级压力 省级政府门户网站、北大法宝数据库

Table 3

Descriptive statistical analysis"

变量名称 N/个 平均值 标准差 最小值 最大值
科研投入 1 471 1.540 1.335 0.024 5.404
科研人力 1 471 1.586 0.925 0.004 6.425
财政依赖 1 471 0.607 0.193 0.175 0.885
人才储备 1 471 10.560 1.107 8.343 12.800
创新能力 1 471 7.916 1.537 4.949 11.000
专业组织 1 471 0.283 0.451 0.000 1.000
官员流动 1 471 0.108 0.311 0.000 1.000
府际模仿 1 471 0.028 0.061 0.000 0.330
省级压力 1 471 0.729 0.444 0.000 1.000

Table 4

Regression analysis results"

变量 绝对值 标准误 显著性 发生率
科研投入 0.419 0.144 0.004** 1.517
科研人力 0.329 0.164 0.045* 1.390
专业组织 0.727 0.366 0.047* 2.070
官员流动 3.030 0.343 0.000* 20.701
财政依赖 4.210 1.197 0.000*** 67.340
人才储备 0.493 0.212 0.020* 1.638
创新能力 0.258 0.123 0.036* 1.295
省级压力 0.497 0.371 0.181 1.644
府际模仿 3.609 2.034 0.076 36.919
_cons -16.362 2.79 0.000*** 0.000

Table 5

Sample cities"

区域 城市 人均GDP/元
东部 河北省保定市 34 159
河北省石家庄市 56 619
江苏省苏州市 172 383
江苏省连云港市 71 998
江苏省盐城市 86 174
浙江省杭州市 144 470
浙江省绍兴市 117 190
福建省厦门市 129 389
福建省三明市 104 781
山东省威海市 118 925
山东省青岛市 129 917
山东省聊城市 51 935
广东省中山市 90 431
广东省潮州市 43 524
海南省三亚市 77 103
中部 山西省太原市 88 968
山西省忻州市 38 742
江西省景德镇市 57 511
江西省九江市 68 985
安徽省马鞍山市 96 230
安徽省亳州市 33 028
安徽省合肥市 109 493
河南省焦作市 65 298
河南省鹤壁市 60 977
湖北省孝感市 49 890
湖北省十堰市 59 561
湖南省长沙市 132 874
湖南省湘潭市 84 011
西部 内蒙古乌海市 111 843
广西贺州市 36 694
广西桂林市 43 303
四川省攀枝花市 91 608
四川省泸州市 48 770
贵州省六盘水市 47 996
云南省普洱市 34 905
云南省临沧市 33 359
西藏日喀则市 37 873
陕西省西安市 84 569
陕西省咸阳市 56 761
甘肃省张掖市 39 985
甘肃省兰州市 72 001
青海海东市 35 258
宁夏固原市 28 385
新疆克拉玛依市 184 081
东北部 吉林省吉林市 43 770
吉林省辽源市 46 628
辽宁省大连市 103 547
辽宁省鞍山市 52 044
黑龙江省哈尔滨市 57 094
黑龙江省鸡西市 35 481

Table 6

Variable calibration data"

变量名称 校准
完全隶属 交叉点 完全不隶属
结果变量 是否发布政策 1 / 0
前因变量 科研资金 4.909 64 1.593 71 0.352 62
科研人员 3.792 22 1.911 51 0.891 05
财政依赖 0.866 85 0.539 58 0.230 60
人才储备 363 738 53 601.0 5 306.80
创新能力 28 407.7 3 635.50 320.500
专业组织 1 / 0
官员流动 1 / 0
校准点为0.95, 0.5, 0.05

Table 7

Truth table"

前因变量 结果
专业组织 官员流动 科研资金 科研人员 财政依赖 人才储备 创新能力 Y 案例
1 1 1 1 1 0 1 1 1 合肥、长沙、杭州、武汉、西安
2 0 1 0 1 1 0 0 1 张掖、攀枝花、普洱
3 1 1 0 1 0 1 1 1 石家庄、兰州
4 1 1 0 1 1 1 1 1 哈尔滨、保定
5 1 1 0 1 1 1 0 1 吉林
6 1 1 1 0 0 1 1 1 厦门、苏州、九江、绍兴
7 1 1 1 1 0 0 1 1 三亚
8 1 1 0 0 1 1 1 1 咸阳
9 1 0 1 0 0 0 0 1 聊城
10 1 0 1 0 0 1 1 1 马鞍山、威海
11 1 0 1 1 0 0 1 1 连云港
12 1 0 1 1 1 0 0 0 亳州
13 1 0 1 1 0 1 0 0 湘潭、盐城
14 0 1 0 0 1 0 0 0 鸡西、临沧
15 1 0 0 1 0 0 0 0 鞍山
16 0 1 0 0 0 0 0 0 乌海
17 0 1 0 0 1 1 0 0 泸州
18 1 0 1 1 0 1 1 0 太原
19 1 1 1 0 1 0 0 0 景德镇
20 1 1 0 0 1 0 0 0 海东
21 1 1 0 0 0 0 0 0 克拉玛依
22 0 0 0 0 1 0 0 0 贺州、十堰、忻州、辽源
23 1 0 0 1 1 1 1 0 桂林
24 0 1 1 0 1 0 0 0 六盘水
25 1 0 0 1 1 0 0 0 固原、日喀则、三明
26 0 1 1 1 0 1 1 0 青岛
27 0 1 1 0 0 1 1 0 焦作
28 0 0 1 0 1 0 1 0 孝感
29 0 0 1 0 1 0 0 0 鹤壁
30 0 0 1 0 0 1 1 0 中山
31 0 0 0 0 1 0 1 0 潮州

Table 8

Conditional configuration results"

前因变量 资源驱动型 人力主导型 多元协同型 技术创新型
组态1 组态2 组态3 组态4 组态5 组态6 组态7
专业组织
官员流动
科研投入
科研人力
财政依赖
人才储备
创新能力
覆盖度 0.136 765 0.079 411 0.109 706 0.088 823 0.231 176 0.100 882 0.171 471
唯一覆盖度 0.014 705 0.019 705 0.015 294 0.088 823 0.127 647 0.006 470 0.047 647
原始一致性 0.887 405 0.876 623 0.956 410 0.967 949 0.976 398 0.932 065 0.901 082
总体覆盖度 0.509 7
总体一致性 0.956 9
典型案例 三亚、连云港 聊城 哈尔滨、吉林 普洱、张掖、攀枝花 杭州、武汉、长沙、西安、合肥、石家庄、兰州 保定、咸阳 苏州、厦门、威海、绍兴、马鞍山、九江

Table 9

Policy diffusion - city matching matrix"

扩散类型 关键指标特征 适配城市
技术引领型 高创新能力 东部、副省级以上或国家创新城市:苏州、杭州、厦门
多元协同型 中创新能力;高科研投入;高专业组织 中东部省会及计划单列市:长沙、武汉、合肥
人力主导型 高官员流动;高科研人力 西部/东北中等城市:保定、吉林
资源驱动型 高科研投入;低创新能力 东部普通地级市或资源型城市:连云港
[1]
OECD. Principles and guidelines for access to research data from public funding[EB/OL]. [2025-01-20].
[2]
范智萱, 王健, 撒旭, 张贵兰. 用户视角下农业科学数据描述信息的“结构-效用”研究[J]. 农业图书情报学报, 2022, 34(10): 57-69.
FAN Z X, WANG J, SA X, et al. Structure-utility of descriptive information of agricultural scientific data from the perspective of users[J]. Journal of library and information science in agriculture, 2022, 34(10): 57-69.
[3]
国务院办公厅关于印发科学数据管理办法的通知[EB/OL]. [2024-11-23].
[4]
“数据要素×”三年行动计划( 2024-2026年)[EB/OL]. [2024-11-23].
[5]
破解科学数据要素化的开放共享难题[EB/OL]. [2024-11-23].
[6]
WILKINSON M D, DUMONTIER M, AALBERSBERG I J, et al. The FAIR guiding principles for scientific data management and stewardship[J]. Scientific data, 2016, 3: 160018.
[7]
许丽媛, 钱力, 常志军. 科学数据汇交共享政策框架研究: 以中国科学院文献情报中心为例[J]. 图书情报工作, 2025, 69(3): 102-109.
XU L Y, QIAN L, CHANG Z J. Research on the policy framework of scientific data collection and sharing: Taking the national science library, Chinese academy of sciences as an example[J]. Library and information service, 2025, 69(3): 102-109.
[8]
王琳, 姚飞飞. 中国政府数据开放成熟度评价指标体系构建与应用研究[J]. 农业图书情报学报, 2023, 35(1): 56-72.
WANG L, YAO F F. Construction and application of the evaluation indicator system of government data openness maturity in China[J]. Journal of library and information science in agriculture, 2023, 35(1): 56-72.
[9]
马海群, 李金玲, 于同同, 张涛. 全生命周期视阈下公共数据伦理准则框架研究[J]. 农业图书情报学报, 2023, 35(6): 29-42.
MA H Q, LI J l, YU T T, et al. A framework of ethics guidelines on public data from a whole life cycle perspective[J]. Journal of library and information science in agriculture, 2023, 35(6): 29-42.
[10]
姜天海, 贾萍萍, 张增一. 政策工具视角下欧美国家与国际组织开放科学政策文本分析及其启示[J]. 图书情报工作, 2022, 66(22): 119-133.
JIANG T H, JIA P P, ZHANG Z Y. Content analysis and enlightenment of open science policies by European and American countries and international organizations from the perspective of policy tools[J]. Library and information service, 2022, 66(22): 119-133.
[11]
姜鑫, 王德庄. 利益相关者视域下科学数据开放政策协同研究: 基于NVivo 12的质性文本分析[J]. 情报理论与实践, 2022, 45(12): 92-102.
JIANG X, WANG D Z. Research on policy synergy of open research data policy from the perspective of stakeholders: A qualitative text analysis based on NVivo 12[J]. Information studies: Theory & application, 2022, 45(12): 92-102.
[12]
宋大成, 焦凤枝, 范升. 我国科学数据开放共享政策量化评价: 基于PMC指数模型的分析[J]. 情报杂志, 2021, 40(8): 119-126.
SONG D C, JIAO F Z, FAN S. Quantitative evaluation of China's open and sharing policies of scientific data: Based on PMC index model[J]. Journal of intelligence, 2021, 40(8): 119-126.
[13]
王浦劬, 赖先进. 中国公共政策扩散的模式与机制分析[J]. 北京大学学报(哲学社会科学版), 2013, 50(6): 14-23.
WANG P Q, LAI X J. A study on the model and mechanism of public policy diffusion in China[J]. Journal of Peking University (philosophy and social sciences edition), 2013, 50(6): 14-23.
[14]
WALKER J L. The diffusion of innovations among the American states[J]. The American political science review, 1969, 63(3): 880-899.
[15]
BERRY F S. Sizing up state policy innovation research[J]. Policy studies journal, 1994, 22(3): 442-456.
[16]
BERRY F S, BERRY W D. State lottery adoptions as policy innovations: An event history analysis[J]. The American political science review, 1990, 84(2): 395-415.
[17]
侯小娟, 周坚. 社会医疗保险城乡统筹: 社会经济发展水平与政策选择: 基于修正“贝瑞政策创新扩散模型”的实证研究[J]. 华南师范大学学报(社会科学版), 2014(3): 101-107.
HOU X J, ZHOU J. Urban and rural social medical insurance: Social and economic development level and policy choice: An empirical study based on the revised berry policy innovation diffusion model[J]. Journal of South China normal university (social science edition), 2014(3): 101-107.
[18]
刘聪. 政府数据开放政策扩散的影响因素研究: 基于省级面板数据的事件史分析[J]. 湖北社会科学, 2025(3): 69-78.
LIU C. On factors influencing the diffusion of government data openness policies: The event history analysis based on provincial panel data[J]. Hubei social sciences, 2025(3): 69-78.
[19]
石庆功, 王子健, 肖希明. 我国地方公共图书馆管理政策扩散研究: 基于贝瑞政策扩散模型的实证分析[J]. 图书馆建设, 2025(3): 105-117.
SHI Q G, WANG Z J, XIAO X M. Research on the diffusion of local public library management policies in China: An empirical analysis based on the berry policy diffusion model[J]. Library development, 2025(3): 105-117.
[20]
ZHU X F, ZHAO H. Recognition of innovation and diffusion of welfare policy: Alleviating urban poverty in Chinese cities during fiscal recentralization[J]. Governance, 2018, 31(4): 721-739.
[21]
王译晗, 初景利. 政策工具视角下科研机构开放科学政策文本量化分析与启示[J]. 农业图书情报学报, 2022, 34(7): 39-52.
WANG Y h, CHU J l. Quantitative analysis and enlightenment on open science policy texts in scientific research institutions from the perspective of policy tools[J]. Journal of library and information science in agriculture, 2022, 34(7): 39-52.
[22]
刘建华, 李鑫雨, 乔晓东. 中国核心期刊研究数据政策实施现状调研与分析[J]. 中国科技期刊研究, 2025, 36(4): 400-409.
LIU J H, LI X Y, QIAO X D. Survey and analysis on the research data policy in Chinese core journals[J]. Chinese journal of scientific and technical periodicals, 2025, 36(4): 400-409.
[23]
丁文姚, 张自力, 余国先, 等. 我国地方大数据政策的扩散模式与转移特征研究[J]. 大数据, 2019, 5(3): 76-95.
DING W Y, ZHANG Z L, YU G X, et al. Research on the diffusion models and transfer characteristic of local big data policy in China[J]. Big data research, 2019, 5(3): 76-95.
[24]
王德庄, 姜鑫. 国外学术期刊科学数据政策质性分析与内容要素研究[J]. 中国科技期刊研究, 2022, 33(8): 1088-1097.
WANG D Z, JIANG X. Qualitative analysis and content elements of scientific data policies of foreign academic journals[J]. Chinese journal of scientific and technical periodicals, 2022, 33(8): 1088-1097.
[25]
吴金鹏, 韩啸. 制度环境、府际竞争与开放政府数据政策扩散研究[J]. 现代情报, 2019, 39(3): 77-85.
WU J P, HAN X. Institutional environment, inter-governmental competition and diffusion of open government data policy in China[J]. Journal of modern information, 2019, 39(3): 77-85.
[26]
郭俊华, 黄嘉宜, 徐倪妮. 科技创新券政策的扩散机制研究: 面向282个地级市的事件史分析[J]. 中国科技论坛, 2022(2): 23-31, 40.
GUO J H, HUANG J Y, XU N N. Research on the diffusion mechanism of innovation voucher policy: An events history analysis for 282 prefecture-level cities in China[J]. Forum on science and technology in China, 2022(2): 23-31, 40.
[27]
完颜邓邓. 澳大利亚高校科学数据管理与共享政策研究[J]. 信息资源管理学报, 2016, 6(1): 30-37.
WANYAN D D. Research on the scientific data management and sharing policies in Australian universities[J]. Journal of information resources management, 2016, 6(1): 30-37.
[28]
申艳. 我国科技期刊数据政策制定及实施模式研究[J]. 知识管理论坛, 2021, 6(5): 252-262.
SHEN Y. Data policy promotes integrative development of data publication and sci-tech journals in China[J]. Knowledge management forum, 2021, 6(5): 252-262.
[29]
ZHU X F, MENG T G. Geographical leadership mobility and policy isomorphism: Narrowing the regional inequality of social spending in China[J]. Policy studies journal, 2020, 48(3): 806-832.
[30]
王流芳. 基于政策工具和政策扩散理论分析的我国科学数据政策部署及扩散研究[D]. 北京: 北京协和医学院, 2024.
WANG L F. Research on the policy deployment and diffusion of Chinese scientific data based on the analysis of policy tools and policy diffusion theory[D]. Beijing: Peking Union Medical College, 2024.
[31]
王流芳, 成晴, 贾晓峰, 等. 基于政策扩散理论的中国科学数据政策扩散特征研究[J]. 科技和产业, 2025, 25(2): 289-299.
WANG L F, CHENG Q, JIA X F, et al. Research on policy diffusion characteristics of Chinese scientific data based on policy diffusion theory[J]. Science technology and industry, 2025, 25(2): 289-299.
[32]
李智超. 政府政策注意力: 我国多层级政府工作报告(2003-2023年)的议题与演化[J]. 行政论坛, 2024, 30(6): 82-92.
LI Z C. Government policy attention: Issues and evolution of multi-level government work reports(2003-2023)in China[J]. Administrative tribune, 2024, 30(6): 82-92.
[33]
姚东旻, 崔孟奇, 赵江威. 地方政府预算结构差异的制度解释: 纵向统筹与横向趋同[J]. 经济学动态, 2022(9): 91-110.
YAO D M, CUI M Q, ZHAO J W. The institutional explanation of the differences in the budget structure of local governments: Vertical planning and horizontal approaching[J]. Economic perspectives, 2022(9): 91-110.
[34]
BERRY F S, BERRY W D. State lottery adoptions as policy innovations: An event history analysis[J]. American political science review, 1990, 84(2): 395-415.
[35]
夏海力, 朱诗晗. 中国省域创新绩效提升的多元路径选择: 基于TOE框架的组态分析[J/OL]. 科技进步与对策, 2024: 1-10.
XIA H L, ZHU S H. Multiple path choice of improving provincial innovation performance in China: A configuration analysis based on TOE framework[J/OL]. Science & technology progress and policy, 2024: 1-10.
[36]
马海群, 张斌. 我国安全情报类法律法规政策扩散分析[J]. 情报杂志, 2019, 38(7): 28-34.
MA H Q, ZHANG B. Analysis on the diffusion of security information laws and regulations and policies in China[J]. Journal of intelligence, 2019, 38(7): 28-34.
[37]
吴峰, 石益静. 教育信息化政策创新扩散的时空特征与影响因素[J]. 苏州大学学报(教育科学版), 2024, 12(2): 82-92.
WU F, SHI Y J. The spatiotemporal characteristics and influencing factors of innovation diffusion of educational informatization policies[J]. Journal of Soochow University (educational science edition), 2024, 12(2): 82-92.
[38]
黄平平, 石乐怡, 吴应强. 政府数据服务质量影响因素与提升路径研究: 基于元分析与模糊集QCA组合分析[J]. 现代情报, 2025, 45(9): 165-176.
HUANG P P, SHI L Y, WU Y Q. Study on influencing factors and improvement path of government data opening service quality: Based on the combined meta-fsQCA analysis[J]. Journal of modern information, 2025, 45(9): 165-176.
[39]
RAGIN C C. Fuzzy-Set Social Science[M]. Chicago: University of Chicago Press, 2000.
[40]
张明, 杜运周. 组织与管理研究中QCA方法的应用: 定位、策略和方向[J]. 管理学报, 2019, 16(9): 1312-1323.
ZHANG M, DU Y Z. Qualitative comparative analysis(QCA)in management and organization research: Position, tactics, and directions[J]. Chinese journal of management, 2019, 16(9): 1312-1323.
[41]
钟光耀, 刘鹏. 动力—路径框架下的干部交流与政策扩散: 基于多案例的比较研究[J]. 经济社会体制比较, 2022(4): 122-132.
ZHONG G Y, LIU P. Officials' job mobility and policy diffusion: A comparative multiple-case study from the perspective of "dynamic-path" framework[J]. Comparative economic & social systems, 2022(4): 122-132.
[1] YOU Ge, LI Jielin, ZHANG Fangshun. Generating Mechanism of Online Public Opinion Heat in Public Emergencies from the Perspective of Information Ecology: Fuzzy Set Qualitative Comparative Analysis Based on 50 Cases [J]. Journal of library and information science in agriculture, 2025, 37(1): 86-99.
[2] Long HAN, Jincheng GUO, Yiting LU, Qun ZHOU. Factors Influencing User Information Adoption in Virtual Communities of Interest: A Study Based on SEM and fsQCA [J]. Journal of library and information science in agriculture, 2024, 36(8): 82-95.
[3] HUI Xiaomeng, CHEN Yuqing, HUI Lianghong. Modeling the Relationship Between Digital Nativity and Digital Citizenship: Based on the Analysis of SEM and fsQCA [J]. Journal of library and information science in agriculture, 2023, 35(3): 37-51.
[4] PAN Yigai, TANG Anyi, HUANG Liying, ZHAO Youlin, GU Chenya. Improving the Effect of Digital Live Broadcasting Activities Based on Configuration Analysis [J]. Journal of library and information science in agriculture, 2023, 35(2): 61-76.
[5] JIANG Zhihui, LI Xuan, CAO Gaohui. Causes and Influence Paths of Digital Stress among Social Media Users [J]. Journal of library and information science in agriculture, 2023, 35(11): 64-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!