中文    English

Journal of Library and Information Science in Agriculture ›› 2020, Vol. 32 ›› Issue (7): 63-72.doi: 10.13998/j.cnki.issn1002-1248.2020.07.20-0181

;

• Research paper • Previous Articles     Next Articles

Taxonomy Construction and Machine Indexing Strategies of Fishery Patent Literature

CHENG Jinxiang1, ZHANG Zhongyue2, CAO Miao3, ZHANG Honglin3,*   

  1. 1. Chinese Academy of Fishery Sciences, Beijing 100141;
    2. School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030;
    3. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223
  • Received:2020-03-19 Online:2020-07-05 Published:2020-07-16

Abstract: [Purpose / Significance] In order to deeply utilize fishery patent literature in "fishery knowledge service system", we construct a specialized taxonomy for the information organization and test it as an indexing tool in the system. [Method / Process] First, 10, 323 metadata of Chinese fishery patents are selected and analyzed in terms of 4-digit and 6-digit IPC numbers frequency. Based on the results, 12 IPC classification codes are chosen as categories in fishery patent literature classification. Then, based on the analysis of patent titles, it is proposed that a patent title consists of three kinds of phrases: those of industry attributes, of business types, and of invention types, among which phrases of business types are the most applicable for classifying and indexing patent literature. In addition, the subject terms and the ending parts of subject terms are analyzed and the high-frequency subject terms and words of each business type are ranked. Last, the strategy of indexing fishery patent literature by using IPC classification numbers and high frequency subject terms is put forward, and as a result, most of the fishery patent literature is classified properly with the assistance of computers. [Results / Conclusions] Giving that the total accuracy rate of machine indexing is 91.44%, and the missing rate is 7.94%, with the comparison between the manually classified and machine classified sampling data of patent literature in 2016, it is concluded that the goal of this study is achieved. The research shows that the classification system constructed from fishery patent literature is practical and the indexing strategy has a high application value.

Key words: fishery, patent literature, classification, machine indexing

CLC Number: 

  • G254.11
[1] 朱江岭. 专利文献——信息时代的重要资源[J]. 图书馆学研究, 1998(3): 56-58.
[2] 雷燕. 介绍因特网上的六个专利文献数据库[J]. 图书情报知识,1998(2): 44-46.
[3] 朴京顺. 浅谈专利数据库及专利文献检索[J]. 中国发明与专利, 2011(9): 63-65.
[4] 丁海燕. 国际专利分类法与分类号[J]. 今日科技, 1985(8): 34-35.
[5] 张颖. 国外网上两类文献分类浏览系统的比较分析[J]. 晋图学刊, 2007(6): 10-12, 32.
[6] 马海群. 网络环境下的国际专利分类法IPC变革与发展[J]. 现代图书情报技术, 2002(6): 41-43.
[7] 朱新超, 霍翠婷, 刘会景. 合作专利分类系统(CPC)与传统专利分类系统的比较分析[J]. 数字图书馆论坛, 2013(9): 38-44.
[8] 朱雅琛, 黄非. CPC分类体系: 开创专利分类体系新纪元[J]. 中国发明与专利, 2013(2): 41-45.
[9] 周青. 专利技术分类构建方法研究[J]. 科技情报开发与经济, 2014, 24(10): 143-144.
[10] 孙艳玲, 刘化冰, 王海虹, 等. 深度加工标引的中国药物专利数据库[J]. 中国医药导刊, 2008(1): 22-24, 26.
[11] 张运良, 桂婕, 朱礼军, 等. 中文专利深度内容标引规范研制[J]. 数字图书馆论坛, 2008(11): 18-21.
[12] 田创, 赵亚娟. 一种基于相似度的专利与产业类目映射模型——以《国际专利分类》与《国民经济行业分类》为例[J]. 图书情报工作, 2016(20): 123-131.
[13] 田创, 赵亚娟. 专利文献与产业类目的映射研究——以2015年度中科院专利与《战略性新兴产业分类》为例[J]. 知识管理论坛, 2017(1): 26-35.
[14] 彭茂祥, 徐勇. 专利分类与产业分类对照关系构建及应用研究[J]. 科学管理研究, 2017(5): 32-35.
[15] 葛川, 杨颖. 煤化工产业专利信息服务平台建设研究[J]. 山西科技, 2018, 33(5): 4-10.
[16] 张婷, 贾晓峰, 曹敏军. 医学科技专利数据库的设计与实现[J]. 计算机与应用化学, 2015, 32(6): 669-673.
[17] 袁真富, 杨敬涵. 专利标引维度及其应用研究[J]. 电子知识产权, 2018(5): 75-84.
[18] 国家知识产权局. IPC分类查询[EB/OL]. [2020-03-02]. http://epub.sipo.gov.cn/ipc.jsp.
[19] 刘德馨, 李有馥. 国际专利分类法评价[J]. 情报科学, 1993(4): 20-27.
[20] 李宏芳, 邹小筑. 中国专利数据库标引质量测评[J]. 现代情报, 2010(12): 58-61.
[21] 李胤, 冯刚, 裴少平. 浅谈F-term分类系统及其在日本专利检索中的应用[J]. 科技情报开发与经济, 2013, 23(19): 130-132.
[22] 刘艳廷, 柴丽丽, 刘会景, 等. 现行专利分类系统概述及其应用场景[J]. 中国基础科学, 2019, 21(5): 58-62.
[23] 刘桂波. 建筑给排水领域CPC分类及其检索应用[J]. 中国发明与专利, 2017, 14(2): 113-116.
[24] 何彦东, 王妍, 蒋碧珠. 光化学领域CPC分类系统应用初探[J]. 中国发明与专利, 2014(8): 114-117.
[25] 唐思慧, 魏静雯. 我国专利信息数据库建设原则与利用体系研究[J]. 图书情报工作, 2012, 56(11): 60-64.
[1] SHI Yunlai, CUI Yunpeng, DU Zhigang. A Classification Method of Agricultural News Text Based on BERT and Deep Active Learning [J]. Journal of Library and Information Science in Agriculture, 2022, 34(8): 19-29.
[2] MAO Jin, CHEN Ziyang. A Deep Learning Based Approach to Structural Function Recognition of Scientific Literature Abstracts [J]. Journal of Library and Information Science in Agriculture, 2022, 34(3): 15-27.
[3] AI Yuxi, XU Jian, HE Lin, QI Yun. A Construction Method of the Classification System Oriented to Content Analysis of Ancient Books [J]. Journal of Library and Information Science in Agriculture, 2021, 33(9): 18-26.
[4] MA Xiaowen, HE Lin, LIU Jianbin, LI Zhangchao, GAO Dan. The Trigger Verb Classification Method of Event Sentences in Ancient Chinese Classics Based on Bi-LSTM [J]. Journal of Library and Information Science in Agriculture, 2021, 33(9): 27-36.
[5] DU Jian. Biomedical Knowledge Discovery Based on Big Data Linkage Analysis [J]. Agricultural Library and Information, 2019, 31(3): 4-9.
[6] LI Junqing, SONG Changqing, ZHOU Hu. Analysis of Agricultural Data Resource Classification and Application Prospect under the Background of Big Data [J]. , 2018, 30(4): 23-27.
[7] LUO Xin. Comparative Study of Chinese Text Classification Model based on Particle Swarm Intelligence [J]. , 2018, 30(4): 18-22.
[8] ZHOU Qing-qing, XIA Ru. Investigation and Analysis on the “User Classification”on Websites of the "985" University Libraries And a Comparison with University Libraries Websites of British and America [J]. , 2017, 29(8): 91-94.
[9] ZHANG Yun-yang. Discussion for Tibetan Books' Cataloging and Circulation in University Library——Take Tibet University Library for example [J]. , 2016, 28(2): 78-80.
[10] GAO Yun-yan. Case Study on the Centralized Classification of Related Books [J]. , 2016, 28(12): 89-92.
[11] GAO Yun-yan. Case Study on the Centralized Classification of Related Books [J]. , 2016, 28(11): 92-95.
[12] LUO Xin. Research on text Classification Model Based on Random Forests [J]. , 2016, 28(11): 50-53.
[13] ZHOU Jian. The Status and Development Trends of Military Information Retrieval Language [J]. , 2016, 28(1): 127-129.
[14] LIANG Ying, ZOU Xiao-zhu. Comparative Analysis on Subject Classification Between ESI Engineering and China’s Ministry of Education [J]. , 2016, 28(1): 76-81.
[15] WEN Xiao-ping. Statistics and Analysis on Subject Distribution of Highly Cited Papers in 21 Kinds of Chinese Core Journals of Agricultural University [J]. , 2016, 28(1): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!