农业图书情报学报 ›› 2023, Vol. 35 ›› Issue (12): 4-17.doi: 10.13998/j.cnki.issn1002-1248.24-0044

• 特约综述 •    下一篇

国内大数据赋能的智慧推荐资源管理技术研究进展

孙雨生1,2, 范颖1, 祝博3   

  1. 1.湖北工业大学 经济与管理学院,武汉 430068;
    2.湖北工业大学湖北农村社会管理创新研究中心,武汉 430068;
    3.北京理工大学 管理学院,北京 100081
  • 收稿日期:2023-11-20 出版日期:2023-12-05 发布日期:2024-04-07
  • 作者简介:孙雨生(1980- ),男,博士,教授,硕士生导师,研究方向为数据智能系统工程、大数据科学与知识服务技术、智慧图书馆技术。范颖(2001- ),女,硕士研究生,研究方向为数据智能系统工程、大数据科学与知识服务技术。祝博(1998- ),男,博士研究生,研究方向为大数据科学与知识服务技术
  • 基金资助:
    教育部人文社会科学研究规划基金项目“基于本体的数字图书馆语义用户兴趣模型构建机理及应用模式研究”(17YJA870016); 河南省高等学校哲学社会科学基础研究重大项目“融入多用户属性的网络知识社区核心用户识别与推荐研究”(2023-JCZD-27); 国家社会科学基金一般项目“基于新媒体的用户学术搜索行为机理研究”(20BTQ072)

Research Advances in Resource Management Technology of Smart Recommendation Enabled by Big Data in China

SUN Yusheng1,2, FAN Ying1, ZHU Bo3   

  1. 1. School of Economics and Management, Hubei University of Technology, Wuhan 430068;
    2. Hubei Innovation Research Center of Rural Social Management, Hubei University of Technology, Wuhan 430068;
    3. School of Management, Beijing Institute of Technology, Beijing 100081
  • Received:2023-11-20 Online:2023-12-05 Published:2024-04-07

摘要: [目的/意义]为资源化数据并支持智慧推荐服务多样化、提升用户交互体验,系统分析国内大数据赋能的用户兴趣建模、项目信息管理技术研究成果,阐述智慧推荐中用户及项目信息规范管理的技术体系。[方法/过程]文章用文献研究法归纳了507篇文献内容,从用户兴趣建模、项目信息管理两方面对国内大数据赋能的智慧推荐资源管理技术进行总结分析:前者包括模型表示、初始化、进化,后者包括数据采集、挖掘、存储、更新、解释。[结果/结论]大数据赋能的用户兴趣建模技术核心研究依托大数据技术在线、离线赋能用户兴趣数据分类采集及预处理、模型进化;大数据赋能的用户、项目信息管理技术核心研究用大数据技术赋能数据分类采集,并用大数据计算基础设施赋能数据离线挖掘、数据存储、数据更新、数据在线解释。现有研究需强化用户、数据双驱型的智慧推荐方案设计、实践研究,且需强化数据安全研究。

关键词: 大数据, 智慧推荐, 数据采集, 数据挖掘, 数据可视化

Abstract: [Purpose/Significance] Data empowerment for collaborative transformation of the entire industrial chain has become a national strategy. In the context of multi-source and heterogeneous big data, we face higher demands on the diversity and real-time of recommendation services, as well as the standardization and comprehensiveness of user and item information management, in order to turn data into resources, support the diversification of smart recommendation services, and enhance the user interaction experience. To this end, we should systematically sort out and analyze the research results of user interest modeling and item information management technologies in China's big data empowerment, elaborate the technical system for standardized management of user and item information in intelligent recommendation. [Method/Process] The article summarizes the content of 507 documents using literature review methods, and summarizes and analyzes the domestic big data empowerment resource management technology for smart recommendation from two aspects: user interest modeling and item information management. User interest modeling technology includes model representation, model initialization and model evolution, the item information management technology shows the goals, implementation methods, implementation techniques, and methods of item information management, including data collection, data mining, data storage, data updating, and data interpretation. [Results/Conclusions] First, the user interest modeling technology of big data empowerment mainly studies the following issues. 1) The method of model representation is to accurately formalize the user's needs. 2) The model is initialized to collect user information in an implicit or explicit way and select tools and technologies according to data types to pre-process user data according to a fixed process, and select measurement methods to quantify user interest. 3) Model evolution aims to apply methods and technologies to evolve user interest models offline and online. Second, the item information management technology of big data empowerment mainly studies the following issues. 1) The online technology and offline equipment are used to synchronously collect item data across the whole domain, integrate domain knowledge, and use algorithm libraries and data analysis methods to mine item data. 2) The distributed storage is used such as databases and file systems to store item data. 3) Data collection, mining, and storage technologies are the main techniques, item data are updated through offline and online methods, and visualization technology is used to intuitively interpret ietm data. Finally, existing research needs to strengthen the design and practical research of user-driven and data-driven smart recommendation solutions, as well as strengthen research on data security.

Key words: big data, smart recommendation, data collection, data mining, data visualization

中图分类号:  TP391;G202

引用本文

孙雨生, 范颖, 祝博. 国内大数据赋能的智慧推荐资源管理技术研究进展[J]. 农业图书情报学报, 2023, 35(12): 4-17.

SUN Yusheng, FAN Ying, ZHU Bo. Research Advances in Resource Management Technology of Smart Recommendation Enabled by Big Data in China[J]. Journal of Library and Information Science in Agriculture, 2023, 35(12): 4-17.