[1] 陈燕方. 基于多粒度的图书馆知识服务创新[J]. 数字图书馆论坛, 2018, 3: 25-30. CHEN Y F.Library knowledge service innovation based on multi-granularity[J]. Digital library forum, 2018, 3: 25-30. [2] 李伟. 基于知识元细粒度信息检索研究[J]. 农业图书情报学刊, 2017, 29(2): 12-15. LI W.Research on fine-grained information retrieval based on knowledge element[J]. Journal of library and information sciences in agriculture, 2017, 29(2): 12-15. [3] 冯儒佳, 王忠义, 王艳凤, 等. 科技论文的多粒度知识组织框架研究[J]. 情报科学, 2016, 34(12): 46-50, 54. FENG R J, WANG Z Y, WANG Y F, et al.Research on multi-granularity knowledge organization framework of scientific and technological papers[J]. Information science, 2016, 34(12): 46-50, 54. [4] 赵鹏. 科技期刊数字化出版建设实践——以金属矿山杂志社为例[J]. 中国科技期刊研究, 2016, 27(7): 763-766. ZHAO P.Practice of the digital construction of scientific journals: A case study of the metal mine magazine[J]. Chinese journal of scientific and technical periodicals, 2016, 27(7): 763-766. [5] 尹军. 数字时代期刊媒体编辑出版创新路径探析[J]. 新闻研究导刊, 2021, 12(9): 216-218. YIN J.Analysis on the innovation path of journal media editing and publishing in digital era[J]. Journal of news research, 2021, 12(9): 216-218. [6] 白杰, 杨爱臣. XML结构化数字出版的特点与流程[J]. 出版广角, 2015, 5: 28-31. BAI J, YANG A C.Features and process of XML structured digital publishing[J]. View on publishing, 2015, 5: 28-31. [7] 谈春梅, 段卫华. 特种文献数据库系统关键技术的研究与实现[J]. 现代图书情报技术, 2002, 6: 52-54. TAN C M, DUAN W H.Research and realization of key techniques of special literature database system[J]. Data analysis and knowledge discovery, 2002, 6: 52-54. [8] 孙坦, 丁培, 黄永文, 等. 文本挖掘技术在农业知识服务中的应用述评[J]. 农业图书情报学报, 2021, 33(1): 4-16. SUN T, DING P, HUANG Y W, et al.Review on the application and development strategies of text mining in agriculture knowledge services[J]. Journal of library and information sciences in agriculture, 2021, 33(1): 4-16. [9] 曹树金, 李洁娜, 王志红. 面向网络信息资源聚合搜索的细粒度聚合单元元数据研究[J]. 中国图书馆学报, 2017, 43(230): 74-92. CAO S J,LI J N, WANG Z H.Research on the meta-data schema for fine-grained aggregation units of internet resources[J]. Journal of library science in China, 2017, 43(230): 74-92. [10] 陆伟, 黄永, 程齐凯. 学术文本的结构功能识别——功能框架及基于章节标题的识别[J]. 情报学报, 2014, 33(9): 979-985. LU W, HUANG Y, CHENG Q K.The structure function of academic text and its classification[J]. Journal of the China society for scientific and technical information, 2014, 33(9): 979-985. [11] 万里鹏. 非结构化到结构化数据转换的研究与实现[D]. 成都: 西南交通大学, 2013. WAN L P.Research and implementation of the transformation from unstructured to structured data[D]. Chengdu: southwest Jiaotong university, 2013. [12] 宋艳娟. 基于XML的HTML和PDF信息抽取技术的研究[D]. 福州: 福州大学, 2005. SONG Y J.Research on the HTML and PDF Information extraction technology based XML[D]. Fuzhou: Fuzhou university, 2005. [13] MARINAI S, GORI M, FELLOW, et al. Artificial neural networks for document analysis and recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(1): 23-35. [14] MINH-THANG L, THUY D N, MIN-YEN K.Logical structure re-covery in scholarly articles with rich document features[J]. Interna-tional journal of digital library systems, 2010, 1(4): 1-23. [15] 段飞虎, 吴盼盼, 冯自强, 等. 一种基于机器学习的论文碎片化信息抽取方法[P]. CN108536683A, 2018-09-14. DUAN F H, WU P P, FENG Z Q, et al. A method for fragmentation extraction of paper based on machine learning[P]. CN108536683A, 2018-09-14. [16] 张昊珗. 非结构化文档的版面分析及表格提取[D]. 北京: 北京交通大学, 2019. ZHANG H Y.Layout analysis and table extraction in unstructured documents[D]. Beijing: Beijng Jiaotong university, 2019. [17] 聂维民, 陈永洲, 马静. 融合多粒度信息的文本向量表示模型[J]. 数据分析与知识发现, 2019, 9: 45-52. NIE W M, CHEN Y Z, MA J.A Text vector representation model merging multi-granularity information[J]. Data analysis and knowledge discovery, 2019, 9: 45-52. [18] 徐浩, 朱学芳, 章成志, 等. 面向学术文献全文本的方法论知识抽取系统分析与设计[J]. 数据分析与知识发现, 2019, 10: 29-36. XU H, ZHU X F, ZHANG C Z, et al.System analysis and design for methodological entities extraction in full text of academic literature[J]. Data analysis and knowledge discovery, 2019, 10: 29-36. |