[1] Alghamdi, R, Alfalqi K. A Survey of Topic Modeling in Text Mining[J]. International Journal of Advanced Computer Science and Applications, 2015, 6(1): 9-27. [2] van Eck NJ, Waltman L, Noyons ECM, et al. Automatic Term Identification for Bibliometric Mapping[J]. Scientometrics, 2010, 82: 581-569. [3] Didier B.Surface Grammatical Analysis for The Extraction of Terminological Noun Phrases[C]. Proceeding COLING '92 Proceedings ofthe 14th conference on Computational linguistics, 1992, 3:977-981. [4] 王博, 刘盛博, 丁堃, 刘则渊. 基于LDA 主题模型的专利内容分析方法[J]. 科研管理,2015, 36(3):111-117. (Wang Bo, Liu Shengbo, Ding Kun, Liu Zeyuan.Patent content analysis method based on LDA topic model[J]. Science Research Management, 2015, 100: 317-329.) [5] Justeson,J.S., Katz,S.M.Technical Terminology: Some Linguistic Properties and An Algorithm for Identification in Text[J]. Natural Language Engineering, 1995, 1(1): 9-27. [6] Thomas L G, Mark S.Finding scientific topics[J]. PNAS, 2004, 101(1): 5228-5235. [7] Donghyun Choi, Bomi Song.Exploring Technological Trends in Logistics: Topic Modeling-Based Patent Analysis[J]. Sustainability, 2018, 10(8): 2810-2835. [8] 宫小翠, 安新颖. 基于LDA 模型的医学领域主题分裂融合探测[J]. 图书情报工作, 2017, 61(18): 76-83. (Gong Xiaocui, An Xinying.A Research of Topic Splitting and Merging Detecting in the Medical Field Based on the LDA Model[J]. Library and Information Service, 2017, 61(18): 64-74. [9] 曲佳彬, 欧石燕. 基于主题过滤与主题关联的学科主题演化分析[J]. 数据分析与知识发现, 2018, 2(1): 64-75. (Jiabin Qu,Shiyan Ou.Analyzing Topic Evolution with Topic Filtering and Relevance. Data Analysis and Knowledge Discovery[J]. Data Analysis and Knowledge Discovery, 2018, 2(1): 64-75.) [10] Jacob P.Python Text Processing with NLTK 2.0 Cookbook[M]. UK.: Packt Publishing Ltd., 2010. [11] 王丽, 邹丽雪, 刘细文. 基于LDA主题模型的文献关联分析及可视化研究[J]. 数据分析与知识发现, 2018, 2(3): 98-107. (Wang Li, Zou Lixue, Liu Xiwen.Visualizing Document Correlation Based on LDA Model[J]. Data Analysis and Knowledge Discovery, 2018, 2(3): 98-107.) [12] Blei David M., Ng Andrew Y., Jordan, Michael I. Lafferty, John.Latent Dirichlet allocation[J]. Journal of Machine Learning Research. January 2003, 3: 993-1022. |