中文    English

Journal of library and information science in agriculture ›› 2025, Vol. 37 ›› Issue (6): 37-54.doi: 10.13998/j.cnki.issn1002-1248.25-0321

Previous Articles    

An Evolutionary Game Analysis of Knowledge Sharing in Online Medical Communities in a Service Ecosystem Environment

XIA Sudi1,2, ZHANG Shuai3, ZHANG Shumin4, XIE Jing1()   

  1. 1.School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023
    2.Jiangsu Province Intelligent Chinese Medicine Health Service Engineering Research Center, Nanjing 210023
    3.School of Mathematics and Statistics, Northeast Normal University, Changchun 130024
    4.Lanzhou Nonferrous Metallurgical Design and Research Institute Co. , Ltd. , Lanzhou 730000
  • Received:2025-05-17 Online:2025-06-05 Published:2025-09-16
  • Contact: XIE Jing E-mail:Xie_Hugh@njucm.edu.cn

Abstract:

[Purpose/Significance] Online medical communities (OMCs) have become an indispensable infrastructure that allows patients to access professional knowledge and enables physicians to expand their service, However, persistent complaints about information quality, physician disengagement and patient attrition reveal that the involved parties often fall into a non-cooperative trap. Prior literature has dominantly examined either the static motivational profiles of individual physicians or patients, or the dyadic interactions between one knowledge contributor and one knowledge seeker. Our understanding of how value co-creation unfolds in a service-ecosystem setting, where platforms, physicians, and patients simultaneously adjust their strategies, is hampered by the absence of a holistic, dynamic, and multi-actor perspective. Therefore, this paper shifts the analytical lens from isolated behavior or bilateral exchange to an evolutionary game among three interdependent stakeholders - the platform, the physician and the patient - within the knowledge service ecosystem. By embedding regulatory cost-benefit logic, trust mechanism and perceived-value-loss arguments into an evolutionary framework, the study unpacks the conditions under which collective knowledge sharing can be sustained and identifies the critical levers that can nudge the system towards a virtuous equilibrium. The findings will advance service-dominant logic and knowledge-sharing theory by revealing how micro-level strategic adaptations aggregate to create macro-level ecosystem viability. The findings will provide actionable insights for platform governance aimed at mitigating the real-world crises such as physician burnout and patient dissatisfaction. [Method/Process] Drawing on evolutionary game theory, we constructed a tripartite model in which the platform chooses between active regulation and passive regulation, the physician between active contribution (including both knowledge transfer and affective/extra-role support) and passive contribution, and the patient between active participation (information search, feedback and self-management behavior) and passive participation. Utility functions were specified to capture the net payoffs of each actor under eight possible strategy combinations, incorporating extra benefits, additional costs, perceived value losses, platform incentives and trust-based moderators. Using replicator dynamics, we derived the evolutionary stable strategies (ESS) for each actor and the joint ESS for the system. MATLAB simulations were then employed to trace the trajectory of strategy adjustment under varying parameter values, with sensitivity analyses performed for regulatory cost, physician reward, community trust and patient effort cost. Parameter ranges were anchored in prior empirical evidence and refined to ensure convergence to feasible equilibria. [Results/Conclusions] The analytical and simulation results converge on three main insights. First, the system possesses a unique pareto-dominant equilibrium-the triad (active regulation, active contribution, and active participation)-that emerges when the product of each actor's trust-adjusted net benefit exceeds the corresponding threshold. Second, the transition path is highly sensitive to the relative magnitude of marginal benefits and costs: lowering the platform's regulatory expenditures or increasing its incremental revenue will accelerate convergence to active regulation; enhancing physicians' reputational and intrinsic rewards or reducing their affective labor cost will markedly elevate cooperative contribution; and compressing patients' cognitive and privacy cost while enlarging their health outcome gain will propel active participation. Third, community trust operates as a critical moderator: when trust is high, physicians are willing to contribute even if the perceived value loss from non-contribution is modest, whereas low trust neutralizes the effect of potential gains and locks the system into a low-effort trap. From a managerial perspective, the study recommends that platforms deploy AI-assisted tools to relieve physicians of repetitive tasks, calibrate incentive budgets to prevent overspending, and establish fairness-enhancing governance practices to foster trust. However, limitations include the omission of knowledge flows between physicians and between patients as well as the reliance on stylized parameters. Future research could extend the model to a multi-layer network incorporating professional sub-communities and patient peer groups, and calibrate the payoff structure with field data could enhance the model's external validity.

Key words: service ecosystem, value co-creation, online medical community, knowledge sharing, evolutionary game

CLC Number: 

  • G353

Table 1

Studies related to knowledge contribution of online medical community (OMC) users"

知识贡献主体理论基础分析方法知识贡献动机及影响因素
医生[26]动机理论回归分析

内部动机(专业资质与声誉)

外部动机(获得的礼物)

健康专业人士[27]

内部动机(专业资质)

外部动机(经济报酬、线上声誉)

医生[28]付费服务渠道、社区互动
医生[29]

外部动机(名誉、互惠)

内部动机(自我效能、无私、同情)

OMC用户[30]社会交换理论信息和情感支持、感知健康风险、信任
用户[31]

社会交换理论

社会支持理论

外部收益(互惠等)、内部收益(自我效能、利他主义愉悦感)、感知代价(编码成本、权力丧失成本)
糖尿病患者[32]社会交换理论信息和情感支持、隐私风险
OMC用户[33]社会支持理论结构方程

系统、信息和服务质量;

信息和情感支持、信任

普通患者[34]社会交换理论渠道扩张理论信息和情感支持、隐私风险
医生[6]社会交换理论定性比较分析物质、名誉收益;知识贡献成本
OMC用户[19]社会资本理论结构方程结构资本、关系资本、认知资本
医生[35]回归分析
OMC用户[36]感知价值理论感知收益(情感支持、陪伴支持、名誉、互惠),感知代价(编码成本、认知成本、隐私关注)

Table 2

Variable setting and connotation description"

对象变量变量说明取值范围
平台B1平台不选择积极规制时的基本收益0<B1
ΔB1平台选择积极规制时的额外收益0<ΔB1
ΔC1平台选择积极规制时,对医生提供的津贴奖励0<ΔC1C1
C1平台选择积极规制时付出的额外成本0<C1
医生B2医生选择消极贡献时获得的基本收益0<B2
ΔB2医生选择积极贡献时获得的额外收益0<ΔB2
C2医生选择消极贡献时的基本投入0<C2
ΔC2医生选择积极贡献时的额外投入0<ΔC2L1
L1医生选择消极贡献时的感知价值损失0<L1
P医生选择消极贡献时,平台对医生的预警0<P
M1医生对社区及成员的信任0≤M1≤1
患者B3患者消极参与时获得的基本收益0<B3
C3患者消极参与时的基本投入0<C3
ΔB3患者积极参与时的额外收益0<ΔB3
ΔC3患者积极参与时的额外投入0<ΔC3
L2患者消极参与时的感知价值损失0<L2
M2患者对社区及成员的信任0≤M2≤1

Table 3

Game strategy benefit matrix of three-party subjects"

博弈主体及策略患者
积极参与(z消极参与(1-z)
平台积极规制(x医生积极贡献(yB1+ΔB1-C1-ΔC1B1+ΔB1-C1-ΔC1
B2+ΔB2+ΔC1-C2-(1-M1ΔC2B2+ΔC1-C2-(1-M1ΔC2
B3+ΔB3-C3-(1-M2ΔC3B3-C3-L2
消极贡献(1-yB1-C1B1-C1
B2-C2-L1-PB2-C2-L1-P
B3-C3-(1-M2ΔC3B3-C3-L2
消极规制(1-x医生积极贡献(yB1B1
B2+ΔB2-C2-(1-M1ΔC2B2-C2-(1-M1ΔC2
B3+ΔB3-C3-(1-M2ΔC3B3-C3-L2
消极贡献(1-yB1B1
B2-C2-L1B2-C2-L1
B3-C3-(1-M2)×ΔC3B3-C3-L2

Fig.1

Evolutionary trend of platform game strategies"

Fig.2

Evolutionary trend of physician's game strategies"

Fig.3

Evolutionary trend of patients' game strategies"

Fig.4

Evolutionary trend of knowledge sharing in tripartite game strategy dynamics"

Fig.5

Sensitivity analysis of parameters affecting the choice of platform's game strategy"

Fig.6

Sensitivity analysis of parameters affecting physicia game strategies"

Fig.7

Sensitivity analysis of parameters affecting patient game strategy"

[1] 茕莹. 从春雨医生用户调研报告,看在线问诊痛点与优化方案[EB/OL]. [2025-03-05]. .
[2] 丁香园.《2022中国医生洞察报告——线上医学行为分析》[EB/OL]. [2025-03-05]. .
[3] 丁香园.《2022中国医生洞察报告》[EB/OL]. [2025-03-05]. .
[4] 易观. 2020年中国互联网医疗年度分析[EB/OL]. [2025-03-05]. .
[5] 杨学成, 涂科. 共享经济背景下的动态价值共创研究: 以出行平台为例[J]. 管理评论, 2016, 28(12): 258-268.
YANG X C, TU K. Research on the dynamic value co-creation in the sharing economic background: A case study of the travel platform[J]. Management review, 2016, 28(12): 258-268.
[6] 邓胜利, 夏苏迪, 许家辉, 等. 组态视角下在线健康社区医生知识贡献影响因素研究[J]. 情报理论与实践, 2022, 45(7): 132-139.
DENG S L, XIA S D, XU J H, et al. Research on factors affecting knowledge contribution behavior of physicians in online heath community from the configuration perspective[J]. Information studies: Theory & application, 2022, 45(7): 132-139.
[7] 王玖河, 刘琳, 王勇. 顾客参与价值共创影响因素研究: 基于演化博弈的视角[J]. 数学的实践与认识, 2018, 48(9): 60-69.
WANG J H, LIU L, WANG Y. A study on the factors affecting customer's participation in value co-creation: Based on evolutionary game[J]. Mathematics in practice and theory, 2018, 48(9): 60-69.
[8] 董微微, 蔡玉胜, 陈阳阳. 数据驱动视角下创新生态系统价值共创行为演化博弈分析[J]. 工业技术经济, 2021, 40(12): 148-155.
DONG W W, CAI Y S, CHEN Y Y. Evolutionary game analysis of value co-creation behavior of innovation ecosystem from the perspective of data driven[J]. Journal of industrial technological economics, 2021, 40(12): 148-155.
[9] 蔡继荣, 韦晓泽. 价值共创还是价值共毁?: 顾企价值创造互动行为协调机制研究[J]. 重庆工商大学学报(社会科学版), 2021, 38(6): 60-72.
CAI J R, WEI X Z. Value co-creation or value co-destruction: Research on interactive behavior coordination mechanism of value creation between enterprise and customer[J]. Journal of Chongqing technology and business university (social science edition), 2021, 38(6): 60-72.
[10] VARGO S L, LUSCH R F. Institutions and axioms: An extension and update of service-dominant logic[J]. Journal of the academy of marketing science, 2016, 44(1): 5-23.
[11] 陈菊红, 王昊, 张雅琪. 服务生态系统环境下利益相关者价值共创的演化博弈分析[J]. 运筹与管理, 2019, 28(11): 44-53.
CHEN J H, WANG H, ZHANG Y Q. Evolutionary game analysis of the value co-creation of the stakeholders in the environment of service ecosystem[J]. Operations research and management science, 2019, 28(11): 44-53.
[12] VARGO S L, LUSCH R F. From repeat patronage to value co-creation in service ecosystems: A transcending conceptualization of relationship[J]. Journal of business market management, 2010, 4(4): 169-179.
[13] 令狐克睿, 简兆权, 李雷. 服务生态系统: 源起、核心观点和理论框架[J]. 研究与发展管理, 2018, 30(5): 147-158.
LINGHU K R, JIAN Z Q, LI L. Service ecosystem: Origin, core viewpoints and theoretical framework[J]. R&D management, 2018, 30(5): 147-158.
[14] 王昊, 陈菊红, 姚树俊, 等. 服务生态系统利益相关者价值共创分析框架研究[J]. 软科学, 2021, 35(3): 108-115.
WANG H, CHEN J H, YAO S J, et al. The value co-creation analysis framework of service ecosystem stakeholders[J]. Soft science, 2021, 35(3): 108-115.
[15] 简兆权, 令狐克睿, 李雷. 价值共创研究的演进与展望: 从“顾客体验”到“服务生态系统”视角[J]. 外国经济与管理, 2016, 38(9): 3-20.
JIAN Z Q, LINGHU K R, LI L. The evolution and prospects of value co-creation research: A perspective from customer experience to service ecosystems[J]. Foreign economics & management, 2016, 38(9): 3-20.
[16] CHANDLER J D, VARGO S L. Contextualization and value-in-context: How context frames exchange[J]. Marketing theory, 2011, 11(1): 35-49.
[17] EDVARDSSON B, TRONVOLL B, GRUBER T. Expanding understanding of service exchange and value co-creation: A social construction approach[J]. Journal of the academy of marketing science, 2011, 39(2): 327-339.
[18] VARGO S L, LUSCH R F. Service-dominant logic: Continuing the evolution[J]. Journal of the academy of marketing science, 2008, 36(1): 1-10.
[19] 周涛, 王盈颖, 邓胜利. 基于社会资本理论的在线健康社区用户参与行为研究[J]. 信息资源管理学报, 2020, 10(2): 59-67, 129.
ZHOU T, WANG Y Y, DENG S L. Research on online health community users' participation based on social capital theory[J]. Journal of information resources management, 2020, 10(2): 59-67, 129.
[20] 易梦馨, 吴江, 蔡婧璇, 等. 信任视角下基于文本图片多源信息的在线择医行为研究[J]. 情报科学, 2021, 39(9): 84-93.
YI M X, WU J, CAI J X, et al. Online doctor selection behavior based on multi-source information of text and pictures from the perspective of trust[J]. Information science, 2021, 39(9): 84-93.
[21] 夏苏迪, 邓胜利, 汪璠. 在线医疗社区健康科普知识供需匹配研究[J]. 现代情报, 2023, 43(7): 38-47.
XIA S D, DENG S L, WANG F. Research on supply optimization of health science knowledge in online medical community based on user need[J]. Journal of modern information, 2023, 43(7): 38-47.
[22] 贺珊, 曹坡, 余佳琪, 等. 网络健康社区用户信息交流的认知动因探究: 基于SEM和fsQCA方法[J]. 现代情报, 2023, 43(3): 42-52.
HE S, CAO P, YU J Q, et al. Research on the cognitive motives of users' health information exchange in online health community using SEM and fsQCA[J]. Journal of modern information, 2023, 43(3): 42-52.
[23] 杜刚, 韩召. 组态视角下患者在线问诊选择的驱动因素[J]. 系统管理学报, 2024, 33(5): 1270-1283.
DU G, HAN Z. Driving factors of patient online consultation choice from a configuration perspective[J]. Journal of systems & management, 2024, 33(5): 1270-1283.
[24] 赵雪芹, 吴鹏, 胡慧慧. 基于集体价值创造的在线健康社区价值共创行为研究: 以“百度抑郁症吧” 为例[J]. 情报科学, 2023, 41(3): 109-118.
ZHAO X Q, WU P, HU H H. Value co-creation behavior of online healthy community based on collective value creation: A case study of Baidu's "depression bar"[J]. Information science, 2023, 41(3): 109-118.
[25] 彭家敏, 谢礼珊, 关新华. 虚拟健康社区医生贡献行为的形成机制[J]. 心理科学进展, 2021, 29(6): 978-989.
PENG J M, XIE L S, GUAN X H. Formation mechanism of the doctor contribution behavior in virtual health communities[J]. Advances in psychological science, 2021, 29(6): 978-989.
[26] ZHANG X F, GUO F, XU T X, et al. What motivates physicians to share free health information on online health platforms?[J]. Information processing & management, 2020, 57(2): 102166.
[27] ZHOU J J, ZUO M Y, YE C. Understanding the factors influencing health professionals' online voluntary behaviors: Evidence from YiXinLi, a Chinese online health community for mental health[J]. International journal of medical informatics, 2019, 130: 103939.
[28] 王盼盼, 吴志艳, 罗继锋. 有偿奖励对医生在线健康社区中贡献行为的影响[J]. 系统管理学报, 2022, 31(2): 343-352.
WANG P P, WU Z Y, LUO J F. Effect of monetary incentive on physicians' contribution behavior in online healthcare community[J]. Journal of systems & management, 2022, 31(2): 343-352.
[29] ZHANG X, LIU S, DENG Z H, et al. Knowledge sharing motivations in online health communities: A comparative study of health professionals and normal users[J]. Computers in human behavior, 2017, 75: 797-810.
[30] ZHANG X, LIU S. Understanding relationship commitment and continuous knowledge sharing in online health communities: A social exchange perspective[J]. Journal of knowledge management, 2022, 26(3): 592-614.
[31] KANKANHALLI, TAN, WEI. Contributing knowledge to electronic knowledge repositories: An empirical investigation[J]. MIS quarterly, 2005, 29(1): 113.
[32] MIN J, CHEN Y, WANG L, et al. Diabetes self-management in online health communities: An information exchange perspective[J]. BMC medical informatics and decision making, 2021, 21(1): 201.
[33] ZHOU T. Examining users' knowledge sharing behaviour in online health communities[J]. Data technologies and applications, 2019, 53(4): 442-455.
[34] MIRZAEI T, ESMAEILZADEH P. Engagement in online health communities: Channel expansion and social exchanges[J]. Information & management, 2021, 58(1): 103404.
[35] 付少雄, 朱梦蝶, 郑德俊, 等. 基于社会资本理论的在线医疗社区医生知识贡献行为动因研究[J]. 情报资料工作, 2022, 43(3): 67-74.
FU S X, ZHU M D, ZHENG D J, et al. Research on the behavior motivation of doctors' knowledge contribution in online medical community based on social capital theory[J]. Information and documentation services, 2022, 43(3): 67-74.
[36] LIU Y M, ZHANG W P. Specific knowledge sharing intention in online health communities: Sense of belonging as a moderator[C]//2020 Chinese Control and Decision Conference (CCDC). August 22-24, 2020, Hefei, China. IEEE, 2020: 4179-4184.
[37] 黄子萱, 熊回香. 在线健康社区用户知识共享与隐藏行为的演化博弈研究[J]. 数据分析与知识发现, 2023, 7(11): 125-139.
HUANG Z X, XIONG H X. Evolution of users' knowledge sharing and hiding behaviors in online health community[J]. Data analysis and knowledge discovery, 2023, 7(11): 125-139.
[38] 姚志臻, 张斌. 激励机制下在线健康社区用户参与行为演化博弈分析[J]. 情报科学, 2021, 39(8): 149-155, 163.
YAO Z Z, ZHANG B. Evolutionary game analysis of users' participation behavior in online health community under incentive mechanism[J]. Information science, 2021, 39(8): 149-155, 163.
[39] 王道平, 刘欣楠, 周玉. 在线健康社区不同级别用户知识交互行为的演化博弈分析[J]. 情报科学, 2022, 40(1): 130-140.
WANG D P, LIU X N, ZHOU Y. Evolutionary game analysis on knowledge interaction of users at different levels in online health communities[J]. Information science, 2022, 40(1): 130-140.
[40] 卢新元, 代巧锋, 王雪霖, 等. 考虑医患两类用户的在线健康社区知识共享演化博弈分析[J]. 情报科学, 2020, 38(1): 53-61.
LU X Y, DAI Q F, WANG X L, et al. Evolutionary game analysis of online health community knowledge sharing considering two types of users: The patient and the doctor[J]. Information science, 2020, 38(1): 53-61.
[41] 侯贵生, 王鹏民, 杨磊. 在线健康社区用户知识转化与共享的演化博弈分析[J]. 情报科学, 2017, 35(7): 31-38.
HOU G S, WANG P M, YANG L. Research on evolutionary game of the knowledge conversion and sharing of online health community users[J]. Information science, 2017, 35(7): 31-38.
[42] LIU S, XIAO W Y, FANG C, et al. Social support, belongingness, and value co-creation behaviors in online health communities[J]. Telematics and informatics, 2020, 50: 101398.
[43] 是沁, 刘雨农. 人文社科专题数据库建设的价值共创行为研究[J]. 现代情报, 2019, 39(12): 28-36.
SHI Q, LIU Y N. Analysis of value co-creation behavior of humanities and social sciences thematic database[J]. Journal of modern information, 2019, 39(12): 28-36.
[1] LI Huimiao, NIU Xiaohong, MA Zhuo, GUO Mohan. Evolutionary Game Research on Stakeholder Decision-Making in Preprint Platform [J]. Journal of library and information science in agriculture, 2025, 37(2): 75-87.
[2] BIN Ning, RONG Jianbang, LIANG Chuyin, CHEN Huannv, HU He. Evolution of Public Opinion on Public Emergencies and Government Response under the Influence of Emotional Factors: Based on the Perspective of the Tripartite Game [J]. Journal of library and information science in agriculture, 2024, 36(1): 46-57.
[3] DONG Panpan, LI Yongming, ZHU Yan. Knowledge Service Mode of University Libraries from the Perspective of Value Co-creation [J]. Journal of library and information science in agriculture, 2023, 35(7): 39-51.
[4] ZHOU Rong, YU Dengke. Practices of Farmer-to-Farmer Information and Knowledge Sharing in Several Countries and the Enlightenment: A Literature Analysis [J]. Journal of library and information science in agriculture, 2018, 30(2): 18-27.
[5] Zhou Rong, Yu Dengke, Jin Entao. The Impact Relationship among Knowledge Sharing among Farmers, Agricultural Technology Diffusion, and Agricultural Sci-tech Achievements Transformation: A Research Framework [J]. Journal of library and information science in agriculture, 2018, 30(2): 28-34.
[6] YU Dengke, YE Yuan, ZHOU Rong. Simulation Analysis of the Impact Mechanism of Social Mentality on Farmer to Farmer Knowledge Sharing [J]. Journal of library and information science in agriculture, 2018, 30(2): 35-42.
[7] YU Dengke, ZHOU Rong. The Contextual Features of Rural Social Networks and Farmer to Farmer Knowledge Sharing Mechanism within the Contexts [J]. Journal of library and information science in agriculture, 2018, 30(2): 43-50.
[8] Zhou Rong, Yu Dengke, Liu Xianqiu. Literature Review of Knowledge Sharing and Collaborative Decision-making in Demand Supply Chain of Agricultural Products [J]. Journal of library and information science in agriculture, 2018, 30(2): 51-58.
[9] FANG Ting. Research on Construction of Knowledge Sharing Mode in Virtual Academic Community Based on SNS [J]. Journal of library and information science in agriculture, 2017, 29(8): 47-51.
[10] YANG Huaizhi. Research on Knowledge Sharing Mechanism of Library’s Makerspace [J]. Journal of library and information science in agriculture, 2017, 29(11): 74-77.
[11] XIAO Zhi-xiong, LOU Jian-jia. Research on the Influence Mechanism of Organizational Culture and Psychological Ownership on the Knowledge Sharing in Knowledge Teams [J]. Journal of library and information science in agriculture, 2016, 28(4): 13-16.
[12] LIN Haohui, CHEN Weili. Research on the Extension Decision of Open Access Knowledge Sharing Based on Game Theory [J]. Journal of library and information science in agriculture, 2016, 28(12): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!